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Abst ract  – A three-step sequence involving highly stereoselective deconjugation

of ethyl (E)-2-pentenoate, osmylation, and resolution by lipase-catalyzed enzymatic

acetylation allowed an extremely expeditious synthesis of (3R,4S)-3-hydroxy-4-

methyl-γ-butyrolactone with 90% ee, from which (–)-blastmycinolactol and (+)-

blastmycinone were synthesized.

Both cis- and trans-3-hydroxy-4-methyl-γ-butyrolactones (1) are useful chiral building blocks for the

synthesis of a series of γ-lactones such as (+)-blastmycinone (3),  a hydrolysis product of antimycin A3,

and compound (4),  a lipid metabolite produced by the Gorgonian coral Plexaura flava. 1  Recently Harcken

and Brückner2 reported an efficient route to chiral cis-4-alkyl-3-hydroxy-γ-butyrolactones which relies on

Sharpless asymmetric dihydroxylation3 of (E)-β,γ-unsaturated esters.  In order to develop a simple and

efficient method for the enantioselective synthesis of 1 ,  we have also examined asymmetric

dihydroxylations of ethyl (E)- and (Z)-3-pentenoates.  However, we found that this approach is not suitable

for the synthesis of the trans-isomer because of low enantioselectivity of the dihydroxylation reaction

(≤25% ee) although the cis-isomer is available with high enantiomeric excess (ca.  80% ee).  Therefore, we

needed to develop an alternative method which provides the trans-isomer with high optical purity.  We

describe herein an extremely concise synthesis of (3R,4S)-3-hydroxy-4-methyl-γ-butyrolactone via

resolution of racemic trans-lactone (1) by lipase-catalyzed acetylation4 and its conversion to (–)-

blastmycinolactol (2) and (+)-blastmycinone (3).
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The required racemic trans-lactone (1) was prepared from ethyl (E)-2-pentenoate (5) in 75% overall yield

by stereoselective deconjugative protonation5 of the lithium dienolate derived from 5  followed by treatment

of the resulting β,γ-unsaturated ester (6) (95:5 Z/E-mixture) with a catalytic amount of OsO4 in the

presence of N-methylmorpholine N-oxide.  Lipase catalyzed acetylation of racemic trans-lactone (1) with

vinyl acetate was examined under various conditions using lipase-PS, lipase-AK, lipase-AY, and

Novozym®.  As a result,  lipase-AK and lipase-AY did not bring about effective kinetic resolution of 1 .

Table 1 summarizes lipase-PS and Novozym® catalyzed acetylations, some of which show successful

results.   Novozyme® was found to be more effective than lipase-PS in this particular transformation.  It is

important to note that addition of 1,4,8,11-tetrathiacyclotetradecane (5 mol%) markedly improved the

enantioselectivity as reported by Takagi and co-workers.6  Furthermore, we also examined lipase-catalyzed

hydrolysis of the acetate of racemic trans-lactone (1) using lipase-PS, lipase-AK, lipase-AY, and

Novozym® in 0.1 M phosphate buffer-acetone (10:1).  In these cases, however, the level of

enantioselectivity was disappointing.  For example, Novozym®-catalyzed hydrolysis gave (3S,4R)-1  (62%

ee, 43%) and (3R,4S)-acetate (7) (77% ee, 39%) and this was the best result obtained by this method.       
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The following is the experimental procedure of the best result we have obtained (entry 10).  To a stirred

solution of recemic trans-lactone (1) (500 mg, 4.31 mmol) in i-Pr2O (5 mL) were added Novozym® (250

mg), vinyl acetate (0.5 mL, 6.5 mmol) and 1,4,8,11-tetrathiacyclodecane (55.6 mg, 0.215 mmol).  After



stirring at room temperature for 1 h, the reaction mixture was filtered through Celite and the filtrate was

evaporated in vacuo.   Purification of the residue by column chromatography (SiO2 30 g, 1:1 n-hexane-

Et2O) afforded (3R,4S)-1  (203 mg, 41%), [α]29D –11.3° (c 1.03, CHCl3),  90% ee, {lit. ,1a [α]25D –10.8°

(c 1.21, CHCl3),  >99% ee}, and (3S,4R)-7  (358 mg, 53%).  The chiral lactone (1) thus obtained was

converted into (–)-blastmycinolactol (2),  mp 47-49 °C, [α]23D –17.8° (c 0.78, MeOH) {lit. , 1d mp 49-50

°C, [α]26 D –18.1° (c 0.80, MeOH)}, and (+)-blastmycinone (3),  [α]23D +9.0° (c 1.0, CHCl3) {lit. , 1d

[α]26D +10.2° (c 1.2, CHCl3)}, by the established procedure.1c  Both 2  and 3  exhibited identical spectral

properties (1H and 1 3C NMR, IR, HRMS) with those reported.1a-c

In conclusion, the present work enables us to secure large quantities of (3R,4S)-3-hydroxy-4-methyl-γ-

butyrolactone with high optical purity (90% ee).

Table 1. Resolution of racemic trans-lactone1 by lipase-catalyzed acetylation

entry enzyme solvent
crown ethera

time (h)  yield (%)b  ee (%)c yield (%)b  ee (%)d
(3R,4S)-1 (3S,4R)-7

PS none 48 48 21 49 34

THF

9 47 39 29 44

A 1 53 59i-Pr2O

i-Pr2O

i-Pr2O

i-Pr2O none 19 47 75 46 55

A 9.5 82 55 42

Novozym® CH2Cl2 none 2 83 52 45

THF none 0.8 50 42 39

Et2O none 1.2 34

none 23 33 51 60 37

84 55 43
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a) crown ether:

(5 mol%)

B C

b) isolated yield.
c) determined by 1H NMR (500 MHz) analysis of the corresponding (R)- and (S)-MTPA esters.
d) determined by 1H NMR (500 MHz) analysis of the corresponding (R)- and (S)-MTPA esters
    after deacetylation (lipase-PS, 0.1 M phospate buffer-acetone).
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