CONCISE SYNTHESIS OF (3R, 4S)-3-HYDROXY-4-METYL- γ -BUTYROLACTONE

Takashi Nishiyama, Toshiko Nishioka, Tomoyuki Esumi, Yoshiharu Iwabuchi, and Susumi Hatakeyama^{*}

Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

Abstract – A three-step sequence involving highly stereoselective deconjugation of ethyl (*E*)-2-pentenoate, osmylation, and resolution by lipase-catalyzed enzymatic acetylation allowed an extremely expeditious synthesis of (3R, 4S)-3-hydroxy-4-methyl- γ -butyrolactone with 90% ee, from which (–)-blastmycinolactol and (+)-blastmycinone were synthesized.

Both *cis*- and *trans*-3-hydroxy-4-methyl- γ -butyrolactones (1) are useful chiral building blocks for the synthesis of a series of γ -lactones such as (+)-blastmycinone (3), a hydrolysis product of antimycin A₃, and compound (4), a lipid metabolite produced by the Gorgonian coral *Plexaura flava*.¹ Recently Harcken and Brückner² reported an efficient route to chiral *cis*-4-alkyl-3-hydroxy- γ -butyrolactones which relies on Sharpless asymmetric dihydroxylation³ of (*E*)- β , γ -unsaturated esters. In order to develop a simple and efficient method for the enantioselective synthesis of 1, we have also examined asymmetric dihydroxylations of ethyl (*E*)- and (*Z*)-3-pentenoates. However, we found that this approach is not suitable for the synthesis of the *trans*-isomer because of low enantioselectivity of the dihydroxylation reaction ($\leq 25\%$ ee) although the *cis*-isomer is available with high enantiomeric excess (*ca*. 80% ee). Therefore, we needed to develop an alternative method which provides the *trans*-isomer with high optical purity. We describe herein an extremely concise synthesis of (3*R*,4*S*)-3-hydroxy-4-methyl- γ -butyrolactone *via* resolution of racemic *trans*-lactone (1) by lipase-catalyzed acetylation⁴ and its conversion to (–)-blastmycinolactol (2) and (+)-blastmycinone (3).

Dedicated to Professor Shô Itô on the occasion of his 77th birthday.

The required racemic *trans*-lactone (1) was prepared from ethyl (*E*)-2-pentenoate (5) in 75% overall yield by stereoselective deconjugative protonation⁵ of the lithium dienolate derived from 5 followed by treatment of the resulting β , γ -unsaturated ester (6) (95:5 *Z/E*-mixture) with a catalytic amount of OsO₄ in the presence of *N*-methylmorpholine *N*-oxide. Lipase catalyzed acetylation of racemic *trans*-lactone (1) with vinyl acetate was examined under various conditions using lipase-PS, lipase-AK, lipase-AY, and Novozym[®]. As a result, lipase-AK and lipase-AY did not bring about effective kinetic resolution of 1. Table 1 summarizes lipase-PS and Novozym[®] catalyzed acetylations, some of which show successful results. Novozyme[®] was found to be more effective than lipase-PS in this particular transformation. It is important to note that addition of 1,4,8,11-tetrathiacyclotetradecane (5 mol%) markedly improved the enantioselectivity as reported by Takagi and co-workers.⁶ Furthermore, we also examined lipase-catalyzed hydrolysis of the acetate of racemic *trans*-lactone (1) using lipase-PS, lipase-AK, lipase-AY, and Novozym[®] in 0.1 M phosphate buffer-acetone (10:1). In these cases, however, the level of enantioselectivity was disappointing. For example, Novozym[®]-catalyzed hydrolysis gave (3*S*,4*R*)-1 (62% ee, 43%) and (3*R*,4*S*)-acetate (7) (77% ee, 39%) and this was the best result obtained by this method.

The following is the experimental procedure of the best result we have obtained (entry 10). To a stirred solution of recemic *trans*-lactone (1) (500 mg, 4.31 mmol) in *i*-Pr₂O (5 mL) were added Novozym[®] (250 mg), vinyl acetate (0.5 mL, 6.5 mmol) and 1,4,8,11-tetrathiacyclodecane (55.6 mg, 0.215 mmol). After

stirring at room temperature for 1 h, the reaction mixture was filtered through Celite and the filtrate was evaporated *in vacuo*. Purification of the residue by column chromatography (SiO₂ 30 g, 1:1 *n*-hexane-Et₂O) afforded (3*R*,4*S*)-1 (203 mg, 41%), $[\alpha]^{29}D^{-11.3^{\circ}}(c \ 1.03, CHCl_3)$, 90% ee, {lit., ^{1a} $[\alpha]^{25}D^{-10.8^{\circ}}(c \ 1.21, CHCl_3)$, >99% ee}, and (3*S*,4*R*)-7 (358 mg, 53%). The chiral lactone (1) thus obtained was converted into (–)-blastmycinolactol (2), mp 47-49 °C, $[\alpha]^{23}D^{-17.8^{\circ}}(c \ 0.78, MeOH)$ {lit., ^{1d} mp49-50 °C, $[\alpha]^{26}D^{-18.1^{\circ}}(c \ 0.80, MeOH)$ }, and (+)-blastmycinone (3), $[\alpha]^{23}D^{+9.0^{\circ}}(c \ 1.0, CHCl_3)$ {lit., ^{1d} $[\alpha]^{26}D^{+10.2^{\circ}}(c \ 1.2, CHCl_3)$ }, by the established procedure. ^{1c} Both 2 and 3 exhibited identical spectral properties (¹H and ¹³C NMR, IR, HRMS) with those reported.^{1a-c} In conclusion, the present work enables us to secure large quantities of (3*R*,4*S*)-3-hydroxy-4-methyl- γ -

In conclusion, the present work enables us to secure large quantities of (3R, 4S)-3-hydroxy-4-methyl- γ butyrolactone with high optical purity (90% ee).

			crown ether ^a		(3 <i>R</i> ,4 <i>S</i>)-1		(3S,4 <i>R</i>)- 7	
entry	enzyme	solvent	(5 mol%)	time (h)	yield (%) ^b	ee (%) ^c	yield (%) ^b	ee (%) ^c
1	PS	CH_2CI_2	none	48	48	21	49	34
2		THF	none	23	33	51	60	37
3		Et ₂ O	none	9	47	39	29	44
4		<i>i</i> -Pr ₂ O	none	19	47	75	46	55
5		<i>i</i> -Pr ₂ O	Α	9.5	36	82	55	42
6	Novozym®	CH_2CI_2	none	2	45	83	52	45
7		THF	none	0.8	50	71	42	39
8		Et ₂ O	none	1.2	34	84	55	43
9		<i>i</i> -Pr ₂ O	none	1.3	45	85	51	67
10		<i>i</i> -Pr ₂ O	Α	1	41	90	53	59
11		<i>i</i> -Pr ₂ O	В	0.5	32	80	64	40
12		<i>i</i> -Pr ₂ O	С	1	39	80	62	40

Table 1. Resolution of racemic trans-lactone1 by lipase-catalyzed acetylation

b) isolated yield.

c) determined by 1 H NMR (500 MHz) analysis of the corresponding (*R*)- and (*S*)-MTPA esters.

d) determined by ¹H NMR (500 MHz) analysis of the corresponding (*R*)- and (*S*)-MTPA esters after deacetylation (lipase-PS, 0.1 M phospate buffer-acetone).

ACKNOWLEDGMENTS

We thank Professor K. Shishido (Pharmaceutical Sciences, The University of Tokushima) for valuable suggestions. We also thank Dr. Y. Hirose (Amano Pharmaceutical Company, Japan) for providing us with lipase-PS, lipase-AK, and lipase-AY.

REFERENCES

- For leading references, see: (a) H. Takahata, Y. Uchida, and T. Momose, J. Org. Chem., 1994, 59, 7201. (b) K. Nishide, A. Aramata, T. Kamanaka, T. Inoue, and M. Node, *Tetrahedron*, 1994, 50, 8337. (c) M. B. M. de Azevedo and A. E. Greene, J. Org. Chem., 1995, 60, 4940. (d) P. A. Jacobi, and P. Herradura, *Tetrahedron Lett.*, 1997, 38, 6621.
- 2. C. Harcken and R. Brückner, Angew. Chem., Int. Ed. Engl., 1997, 36, 2750.
- 3. For a review on Sharpless asymmetric dihydroxylation, see: H. C. Kolb, M. S. VanNieuwenhze, and K. B. Sharpless, *Chem. Rev.*, 1994, **94**, 2483.
- For reviews on lipase-catalyzed reactions, see: (a) C.-H. Wong and G. M. Whitesides, *Enzymes in Synthetic Organic Chemistry*; Pergamon Press, Oxford, 1994. (b) K. Nakamura and Y. Hirose, *J. Synth. Org. Chem. Jpn.*, 1995, **53**, 668.
- 5. (a) E. P. Krebs, *Helv. Chim. Acta*, 1981, 64, 1023. (b) A. S. Kende and B. H. Toder, *J. Org. Chem.*, 1982, 47, 163. (c) Y. Ikeda, N. Ukai, and H. Yamamoto, *Tetrahedron*, 1987, 43, 743. (d) P. Galatsis, J. J. Manwell, and S. D. Millan, *Tetrahedron Lett.*, 1996, 37, 5261.
- 6 Y. Takagi, J. Teramoto, H. Kihara, T. Itoh, and H. Tsukube, *Tetrahedron Lett.*, 1996, **37**, 4991.