## HETEROCYCLES, Vol. 54, No. 1, 2001, pp. 101 - 104, Received, 1st June, 2000

## SAMARIUM(II) IODIDE-MEDIATED INTRAMOLECULAR ALDOL-TYPE CYCLIZATION

Masakazu Sono, Yasuyo Nakashiba, Katsuyuki Nakashima, Shigeru Takaoka, and Motoo Tori\*

Faculty of Pharmaceutical Sciences, Tokuhsima Bunri University, Yamashiro cho, Tokushima, 770-8514, Japan

<u>Abstract</u> - The  $\alpha$ -substituted  $\alpha,\beta$ -epoxy ketone having a formyl group in the molecule reacted with samarium(II) iodide to afford cyclized spiro ketones formed by an intramolecular aldol-type reaction. However, in the presence of proton source the ratio of spiro products decreased and the yield of hydrindanone increased. The  $\alpha$ -substituted  $\alpha,\beta$ -unsaturated cyclopentenone derivative smoothly cyclized into the same hydrindanone.

The development of synthetic reaction for C-C bond formation is important in organic synthesis. We have been interested in developing a new C-C bond formation reaction using a radical process, electrolysis<sup>1</sup> and/or SmI<sub>2</sub>.<sup>2</sup> Previously, we reported cyclization of  $\alpha,\beta$ -unsaturated cyclopentenones with formyl groups to hydrindanones using SmI<sub>2</sub>.<sup>3</sup> The stereochemistries of hydrindanones depend on the conditions with/without the proton source and/or HMPA. Thus *cis* or *trans* stereochemistry of the products can now be predicted.<sup>3</sup> A variety of regio- and stereoselective reductive coupling reactions using SmI<sub>2</sub> have been widely used for synthesis of natural products and many reviews on this matter have appeared.<sup>4</sup> It is known that  $\alpha$ ,  $\beta$ -epoxy ketone is reduced by SmI<sub>2</sub> to form  $\beta$ -hydroxy ketones in good yield.<sup>5</sup> The radical-type C-C bond formation by sequential epoxide fragmentation/radical cyclizations mediated by SmI<sub>2</sub> has been reported by Molander *et al.*<sup>6</sup> The aldol-type C-C bond formation reaction of  $\alpha$ ,  $\beta$ -epoxy ketone using SmI<sub>2</sub> in excellent yield and selectivity has been recently reported by Mukaiyama *et al.*<sup>7</sup> This prompted us to report our recent results of aldol reactions mediated by SmI<sub>2</sub> to afford cyclized spiro ketones formed by an intramolecular aldol-type reaction.

The epoxide (1) (mixture of diastereoisomers, 3:2)<sup>8</sup> was first treated with SmI<sub>2</sub> in THF at 0°C for 1 h to yield three products (2, 3, and 4) in the ratio of 47:27:26 in 89% yield (Table 1, entry 1). The ratio was determined by GC-MS. Because compound (2) gave crystals, the X-Ray analysis was carried out to establish the spiro structure.<sup>9</sup> As epoxide (1) was a mixture of diastereoisomers,<sup>8</sup> spiro product (2) must

This paper is dedicated to Professor Shô Itô on the occasion of his 77th birthday.

| ОСНО                                                                                | SmI <sub>2</sub><br>THF |           | HŌ  | О<br>Н +<br>ОН | HÖ +        | СНО   |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------|-----------|-----|----------------|-------------|-------|--|--|--|
| 1                                                                                   |                         | 2         | 3   |                | 4           | 5     |  |  |  |
| Table 1. Results of the reaction of <b>1</b> with $SmI_2$ . <sup>a</sup>            |                         |           |     |                |             |       |  |  |  |
| entry $SmI_2(eq)$ additive (eq)temp (°C) time (h) yields (%) (2:3:4:5) <sup>b</sup> |                         |           |     |                |             |       |  |  |  |
| 1                                                                                   | 12.0                    |           | 0   | 1              | 89 (47:27:2 | 26:0) |  |  |  |
| 2                                                                                   | 6.0                     | MeOH (10) | 0   | 0.5            | 62 (5:40:55 | 5:0)  |  |  |  |
| 3                                                                                   | 8.0                     | MeOH (10) | -78 | 1              | 53 (0:24:38 | 8:38) |  |  |  |

<sup>a</sup> The reaction was carried out in THF.

<sup>b</sup> Yields are isolation yields and ratios of products were determined by GC-MS.

have been derived from the  $\beta$ -epoxide. The <sup>1</sup>H NMR and IR spectra of the second product (**3**) showed the presence of two methine protons at  $\delta$  3.85 (1H, s) and 4.52 (1H, dd, J=8.0, 5.2 Hz) bearing hydroxyl groups (3300 cm<sup>-1</sup>).<sup>10</sup> The <sup>1</sup>H NMR spectrum of **3** is very similar to that of **2**, indicating that these are isomers each other. The 2D NMR analysis established the stereostructure of **3** as depicted in the formula.<sup>11</sup> This compound must be derived from the  $\alpha$ -epoxide of **1**. Compound (**4**) showed the presence of a hydroxyl (3450 cm<sup>-1</sup>) and a carbonyl (1730 cm<sup>-1</sup>) group as well as three methyl groups in the IR and <sup>1</sup>H NMR spectra. The 2D NMR analysis established the stereostructure of **4** to be a *trans*-hydrindanone as depicted in the formula.<sup>11</sup> In entry 2, MeOH was added as a proton source and the products were **2**, **3**, and **4** in the ratio of 5:40:55 in 62% yield. However, at -78°C the rate of the reaction was slowed down and the yield dropped to 53% (entry 3). Moreover the fourth product (**5**) was obtained and compound (**2**) was not formed.



Table 2. Results of the reaction of **5** with SmI<sub>2</sub>.<sup>a</sup>

| entry | $SmI_2(eq)$ | additive(eq) | temp (°C) | time (h) | yield (%) of $4^b$ |
|-------|-------------|--------------|-----------|----------|--------------------|
| 1     | 3           | HMPA(5)      | 0         | 0.5      | 27                 |
| 2     | 6           | MeOH(5)      | 0         | 1.25     | 25                 |

<sup>a</sup> The reaction was carried out in THF.

<sup>b</sup> Yields are isolation yields.

Then, a keto aldehyde (5) was treated with  $SmI_2$  in THF in the presence of HMPA to give a hydrindanone (4) as a sole product (Table 2, entry 1). When MeOH was added to the reaction mixture as a proton source, the same product (4) was obtained in 25% yield (entry 2).<sup>12</sup>



Figure 1. Proposed reaction mechanism.

These results suggest the possible reaction mechanism as shown in Figure 1. As Molander<sup>5</sup> and Mukaiyama *et al.*<sup>7</sup> pointed out, this reaction must proceed *via* samarium enolate like **6a**, **b** (Figure 1),<sup>12</sup> which attacks the formyl group to yield bis-aldols (**2**) and (**3**) *via* intermediates (**7b**) and (**7a**), respectively. While in the case of **5**, the radical at the  $\beta$ -position of the carbonyl group attacked the formyl group to afford the hydrindanone (**4**).

In conclusion, compound (1) gives 2 or 3 *via* path A (intramolecular aldol-type cyclization) and 4 *via* path B and C. In contrast to the epoxide (1), compound (5) affords 4 *via* path C. This is the first example of intramolecular aldol-type reaction mediated by  $SmI_2$  to yield spiro systems.

## ACKNOWLEDGMENTS

We thank Dr. Masami Tanaka and Miss Y. Okamoto (TBU) for measurements of 600 MHz NMR and MS spectra, respectively.

## **REFERENCES AND NOTES**

- M. Sono, N. Toyoda, K. Shimizu, E. Noda, Y. Shizuri, and M. Tori, *Chem. Pharm. Bull.*, 1996, 44, 1141.
- 2. G. A. Molander and M. Sono, *Tetrahedron*, 1998, 54, 9289.
- 3. M. Sono, Y. Nakashiba, K. Nakashima, and M. Tori, J. Org. Chem., 2000, 65, 3099.
- (a) G. A. Molander, *Chem. Rev.*, 1992, **92**, 29. (b) G. A. Molander and C. R. Harris, *Chem. Rev.*, 1996, **96**, 307. (c) G. A. Molander and C. R. Harris, *Tetrahedron*, 1998, **54**, 3321; G. A. Molander, *Acc. Chem. Res.*, 1998, **31**, 603.

- 5. G. A. Molander and G. Hahn, J. Org. Chem., 1986, 51, 2596.
- (a) G. A. Molander and C. d. P. Losada, Tetrahedron, 1998, 54, 5819. (b) G. A. Molander and C. 6 d. P. Losada, J. Org. Chem., 1997, 62, 2935.
- T. Mukaiyama, H. Arai, and I. Shiina, Chem. Lett., 2000, 580. 7.
- 8. Compounds (1) and (5) were prepared from 10 as shown below. Epoxides 15 and 1 were not separated after several trials, and the stereochemistries could not be determined.



(a) TBDMSCl, Et<sub>3</sub>N; (b) O<sub>3</sub>; then NaBH<sub>4</sub>; (c) DHP, PPTS, CH<sub>2</sub>Cl<sub>2</sub>; (d) TBAF, THF, rt, 1 h; (e) Swern oxid; (f) TBDMSOCH<sub>2</sub>CMe<sub>2</sub>CH<sub>2</sub>MgBr, THF, rt; (g) 5%KOH, THF, 70°C; (h) TsOH, MeOH-H2O, rt; (i) 4M NaOH, H2O2, MeOH, rt

9. X-Ray data of 2 : Mr=218.00, Monoclinic, P2<sub>1</sub>, a=10.902(3),  $b=6.370(2), c=9.389(2), \beta=114.25(2)^{\circ}, V=594.5(3)^{-3}, Z=2,$ Dx=1.217 Mg m<sup>-3</sup>, Dm=1.200 Mg m<sup>-3</sup>, R=0.054, 509 observed reflections.



ORTEP drawing of compound (2).

- 10. **3**: IR: 3300, 1730cm<sup>-1</sup>; <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD)  $\delta$  0.91 (3H, d, J= 6.9), 1.08 (3H, s), 1.19 (3H, s), 1.69 (2H, m), 1.82 (1H, m), 1.91 (2H, m), 1.95 (1H, d, J=18), 2.15 (1H, d, J=18), 3.85 (1H, s), 4.52 (1H, dd, J=8.0, 5.2); <sup>13</sup>C NMR (50 MHz, CD<sub>3</sub>OD) & 15.0 (CH<sub>3</sub>), 21.5 (CH<sub>3</sub>), 28.6 (CH<sub>3</sub>), 31.4 (CH<sub>2</sub>), 34.9 (CH<sub>2</sub>), 39.1 (C), 44.1 (CH), 55.6 (CH<sub>2</sub>), 66.7 (C), 75.0 (CH), 82.7 (CH), 220.0 (CO); MS (CI) m/z 213 (M+H)<sup>+</sup>, 195 (base); HRMS (CI) m/z 213.1519 (M+H)<sup>+</sup> C<sub>12</sub>H<sub>21</sub>O<sub>3</sub> requires 213.1491.
- 11. The stereochemistries of 3 and 4 were determined by NOESY spectra (the observed NOE's were shown).
- 12. In this reaction, compound (16) was not formed. This is due to the fact that the reduction potential of the carbonyl group is higher than that of the enone system.

