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Abstract - Allyltrimethylsilane reacted with N-carbobenzoxy-L-phenylalaninal to 
afford with high diastereoselectivity syn-adduct which was subsequently 
transformed into (2S,3S,5R)-(+)-preussin.  
 
 

Stereocontrolled transformation of α–amino acids has long been of great interest due to their importance 

as chiral building blocks in the synthesis of biologically active molecules.1 In our recent studies involving 

the synthesis of antibiotic amino sugars, we have found that suitably protected α–amino aldehydes are 

very convenient and versatile chirons.2 For example, addition of allyltrimethylsilane to N-mono- and 

N,N-diprotected α–amino aldehydes offers an easy access to almost enantiomerically pure both syn- and 

anti-adducts3 which are readily transformed into natural products, such as 3-hydroxyproline,4 

1,3-dideoxynojirimycin,5 and statine.6  

Now we report a new application of our methodology to the stereoselective and short synthesis of 

(2S,3S,5R)-(+)-preussin (1),7 also known as L-657,398,8 a naturally occurring pyrrolidine alkaloid 

isolated from the fermentation of Aspergillus ochraceus ATCC 22947 and Preussia sp., a similar but 

better antifungal agent, as compared with anisomycin. Since pioneering synthesis by Pak et al.,9 several 

asymmetric syntheses of 1 have been reported. 10 

Retrosynthetic analysis, shown in Scheme 1, suggested that N-carbobenzoxy-L-phenylalaninal (5)11 and 

allyltrimethylsilane could serve as starting materials.  

Addtition of allyltrimethylsilane to aldehyde (5) in the presence of one equiv. of SnCl4 at -78˚C, afforded 

with very high diastereoselectivity (98:2) the syn-adduct (4)13 in 77% yield. Olefin (4) was subjected to 

the vanadium-catalyzed epoxidation reaction,14 furnishing in 87% yield a chromatographically 

unseparable mixture of diastereoisomeric epoxides (3a) (syn) and (3b) (anti) in a ratio of 7:3. 

Hydrogenation of this mixture on palladium on charcoal as a  catalyst  caused deprotection  of  the  amino 

                                                           
♣ Dedicated to Professor Sho Ito on the occasion of his 77th birthday. 



 
 

Ph

HNCbz

OH
O

3

N C9H19

HO

Ph

CH3

1

N

HO

Ph

CO2CH3

OH

2

Ph

HNCbz

OH

45

Ph

HNCbz

O

H

 
Scheme 1 Retrosynthetic analysis  

 

group and subsequent cyclization to afford a mixture of diastereoisomeric pyrrolidines, which was treated 

with methyl chloroformate and subjected to chromatographic separation to give two pure 

diastereoisomers (2a)15 and (2b) in the same ratio as in the case of their precursors (3a) and (3b) (Scheme 

2). The major diastereoisomer (2a), isolated in 59% yield, calculated on a starting mixture of epoxides 

(3), was oxidized using the TEMPO procedure12 to furnish the known aldehyde (6).9 Final transformation 

of 6 via the Wittig reaction with n-C8H17P+Ph3I-, followed by Pd/C hydrogenation and LiAlH4 reduction 

afforded the desired (2S,3S,5R)-(+)-preussin (1)16 in good overall yield and correct stereochemistry.  
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Scheme 2. Reagents and conditions: (a) AllSi(CH3)3, SnCl4, CH2Cl2, -78oC, 77%; (b) t-C4H9OOH, 

VO(acac)2 cat., CH2Cl2, rt, 87%; (c) H2, 5% Pd/C, CH3OH, rt, quant.; (d) ClCO2CH3, CH2Cl2, sat. aq 

NaHCO3, rt, 83%; (e) sat. aq NaHCO3, 4% aq NaOCl, 10% aq NaBr, TEMPO cat., AcOC2H5-PhCH3 1:1, 

-5oC, 72%; (f) n-C8H17P+Ph3I-, n-C4H9Li, THF/HMPA 9:1, -78oC, 80%; (h) LiAlH4, THF, reflux, 85%.  



 
 

It is noteworthy that allyl addition to N-Bn-N-Cbz analogue of 5, carried out under Barbier conditions,3a 

afforded the appriopriate anti-adduct with good selectivity (86:14) and in high yield (98%). The 

syn-adduct (4) and its anti-isomer as well as their N-Bn-N-Cbz analogues can undergo the catalytic 

VO(acac)2/t-C4H9OOH epoxidation with syn-selectivity or the Al(Ot-C4H9)3/t-C4H9OOH epoxidation 

with high anti-selectivity. Combination of those possibilities provides selective access to all 

diastereoisomers of 2 and, as a consequence, to all diastereoisomers of preussin.  
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