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Abstract  -Pyridinium dicyanomethylides (1) underwent 1, 3-dipolar cycloaddition

with 1-phenyl-propa-1,2-diene (2) to give a mixture of  3-cyano-2-methyl-1-

phenylindolizines (4) and 3-cyano-1-methyl-2-phenylindolizines (5), accompanied

by dehydrocyanation and 1, 3-sigmatropic hydrogen shift.

 Pyridinium dicyanomethylides (1) and pyridinium bis(methoxycarbonyl)methylides are of synthetic

utility for the preparation of novel heterocycles such as indolizines,1cycl[3.2.2]azines,2 and 2-pyrones.3

Due to their intriguing electronic properties and chemical reactivities, these stable cycloimmonium

ylides have been the subject of extensive theoretical and experimental studies.4 One of the most facile

methods for construction of indolizine nucleus would be 1,3-dipolar cycloadditions of cycloimmonium

ylides with activated alkynes. Indeed a variety of  indolizines have been prepared by this method

employing stable cycloimmonium ylides.1 ,5 However, one of the drawbacks of this method using stable

ylides is that the reaction is limited to only activated alkyne (and alkenes). To surmount this difficulty

to some extent, we have envisaged to employ allenes as a synthetic equivalent of unactivated alkynes since

an initial adduct with an allene is expected to undergo rearragement to an indolizine (Scheme 1).
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As a model study, we chose phenylallene (2) that could serve as an equivalent of 1-phenylpropyne

(methylphenylacetylene) (3)  because 2 is readily prepared from commercially available propargyl alcohol.6

First, as a controlled experiment, reaction of 1-phenylpropyne (3) with pyridinium dicyanomethylide (1a)

was performed in refluxing toluene for 30 h, where no reaction was observed. Next, heating of pyridinium

dicyanomethylide (1a) with 2 in refluxing toluene afforded, to our delight but albeit in low yield, a

mixture of 3-cyano-2-methyl-1-phenylindolizine (4) and 3-cyano-1-methyl-2-phenylindolizine (5) after

separation by medium pressure liquid chromatography (Merck: Lobar-size B, LiChroprep Si60; eluent:

hexane/ethyl acetate=19/1).7 Analogous reactions of 4-methyl- (1b) and 4-cyanopyridinium

dicyanomethylide (1c) with 2 gave the corresponding indolizines (4) and (5) (Scheme 2). The regiochemical

assignments were established by X-Ray analyses of the 7-methyl analogs (4b) and (5b).8  On the basis of

inspection of NMR data, it has turned out  that  1H and 13C resonances of 1-CH3 group (e.g.. 5) always



appear at higher field than those of 2-methyl group (e.g.. 4) probably due to paramagnetic shielding effect

of phenyl group, thus enabling us to assign regiochemical structure in this system. The considerably low

yields of the products (4 and 5) might be filled to some extent because of the ready availability of 2.

The formation of 4 and 5 is explained by  an initial 1, 3-dipolar cycloaddition of 1 to 1, 2-bond of 2 to give

the corresponding adducts, followed by dehydrocyanation and 1, 3-H shift. The initial 1, 3-dipolar reactions

are apparently controlled by dipole (LUMO)-allene (HOMO) since the values of the energy difference

between dicyanomethylide (LUMO)-allene (HOMO) are  smaller than those of dicyanomethylide

(HOMO)-allene (LUMO).9

Further studies on generality of this reaction using a variety of ylides as well as on cycloadditions of

ylides with other kind of allenes are in progress.
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