BIOTRANSFORMATION OF TERPENOIDS FROM THE CRUDE DRUGS AND ANIMAL ORIGIN BY MICROORGANISMS

Toshihiro Hashimoto,^{a)} Yoshiaki Noma,^{b)} and Yoshinori Asakawa^{a)*}

a Faculty of Pharmaceutical Sciences, Tokushima Bunri University, b *Faculty of Domestic Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan*

Abstract - Terpenoids, dehydrocostuslactone (2), costunolide (3), α -, β -, and γ -cyclocostunolides (**4**~**6**), α-santonin (**7**) and atractylon (**8**) isolated from the crude drugs and (-)-ambrox (**9**) from animal origin were biotransformed by *Aspergillus niger*, *A. cellulosae*, and *Botryospaeria dothidea* etc. to afford the structurally interesting metabolites*.* Their stereostructures were established by a combination of high-resolution NMR spectrum, X-Ray crystallographic analysis and chemical reaction. The metabolic pathways of terpenoids by *A. niger* resembled those by mammals, but are quite different from those by *A. cellulosae*.

INTRODUCTION

We are continuing to study the biotransformation of plant secondary metabolites by microorganisms $1-3$ and mammals⁴⁻⁵ to obtain some functional substances such as pheromones and perfumes. Recently, we reported the biotransformation of germacrane-type sesquiterpenoids⁶ isolated from the crude drug Curcumae Rhizoma (\qquad), 6-gingerol⁷ and shogaol), α -eudesmol⁸ from the crude drug Magnoliae Cortex (厚朴), β-eudesmol⁹ and hinesol (**1**),¹⁰ the latter of which has spasmolytic activity, from Atractylodis Lanceae Rhizoma (a).

The biotransformation of **1** by *Aspergillus niger* afforded the structurally interesting metabolites (**10**~**12**)

through intramolecular etherification and rearrangement reactions of **1** and compounds (**13**~**15**). It is noteworthy that the biotrasformation of **1** by *A. niger* is very similar to that of oral administration to mammals, since 1 was mainly converted into 13~15 by rabbit as shown in Figure 1.¹¹

Figure 1. Biotransformation of hinesol (**1**) by *Aspergillus niger* and rabbit.

In continuation of the biotransformation studies of the secondary metabolites from crude drugs and animals to obtain biologically active compounds, the significantly valuable animal perfume, (-)-ambrox (**9**) from Ambergris (竜涎香), dehydrocostuslactone (**2**) and costunolide (**3**) from Saussureae Radix (

), α -, β -, and γ-cyclocostunolides (4~6) derived from 3, α -santonin (7) from Cinae Flos (), 1, 2-dihydro-α-santonins (**16**) and 1, 2, 4, 5-tetrahydro-α-santonins (**17** and **18**) derived from **7**, and atractylon (**8**) from Atractylodis Rhizoma (白朮) were biotransformed by *A. niger*, *A. cellulosae* and *Botryospaeria dothidea* etc*.* Fractionation of each crude metabolite from each substrate resulted in the isolation of the structurally interesting compounds*.* The stereostructures of their metabolites were established by a combination of NMR spectra, X-Ray crystallographic analysis and some chemical reactions.

1. Biotransformation of (-)-ambrox (9)

In the course of chemical conversion of a large amount of natural products isolated from liverworts into biologically active substances, we reported the chemical conversion of labdane-type diterpenoid, labda-12, 14-dien-7α, 8α-diol (**19**) isolated from the liverwort *Porella perrottetiana* into the significantly valuable animal perfume, (-)-ambrox (**9**) *via* 6 steps in reasonable yield as shown in Scheme 1.¹²

Scheme 1. Synthetic pathways of (-)-ambrox (**9**).

In order to obtain a more effective perfume from (-)-ambrox (**9**), biotransformation of **9** was carried out

by *A. niger* and *A. cellulosae*. *A. niger* was inoculated and cultivated rotatory (100 rpm) in Czapek-pepton medium3 at 30°C and in pH 7.0 for 2 days. (-)-Ambrox (**9**)(100 mg/200 mL) was added to the medium and further cultivated for 4 days. Culture broth was extracted with ether and the crude metabolites were chromatographed on silica gel (CHCl₃-EtOAc gradient) and Sephadex LH-20 (CHCl₃-MeOH=1:1) to give four metabolites, **20** (52.4%), **21** (1.4%), **22** (3.3%) and **23** (10.2%) as shown in Figure 2.

Figure 2. Biotransformation of (-)-ambrox (**9**) by *Aspergillus niger*.

The IR spectrum of compound (20), $C_{16}H_{26}O_4$ (HRMS; [M]⁺ m/z 282.1831) indicated the presence of a hydroxyl (3420 cm⁻¹) and a carboxyl (3200~2400 and 1690 cm⁻¹) groups. The esterification of **20** with trimethylsiliyldiazometane [Me₃Si-CHN₂ /MeOH /0~5)] gave a methyl ester (24), indicating the presence of a carboxyl group in **20**. The structure of **20** was finally established by its X-Ray crystallographic analysis as shown in Figure 3. Acetylation of compound (21) , $C_{16}H_{28}O_3$ (HRMS; [M]⁺ m/z 268.2039) afforded diacetate (**25**) indicating the presence of two hydroxyl groups (IR; 3356 cm-1) in **21**. The structure of **21** was determined as 3β,18-dihydroxy-(-)-ambrox by a chemical correlation with **20** as shown in Figure 4.

Figure 3. ORTEP drawing of compound(**20**)**.**

Figure 4. The Chemical correlation between compounds (**20**) and (**21**).

Reduction (LiAlH₄ / Et₂O) of 24 afforded diol (21) the spectral data of which were identical to natural diol (21). The structure of 22, C₁₆H₃₀O₃ was established as an ether-bond cleavage compound of 3βhydroxy-(-)-ambrox (26) by X-Ray crystallographic analysis as shown in Figure 5. The IR and ¹³C NMR spectra of 23, $C_{16}H_{28}O_3$ indicated the presence of a carbonyl (1707 cm⁻¹; δ_C 215.8) group. The structure of **23**was confirmed to be a 3-oxo compound of **22** by comparison of ¹ H and 13C NMR spectra with those of **22** and high resolution 2D-NMR spectra (COSY, NOESY, HMQC and HMBC) of **23**.

Figure 5. ORTEP drawing of compound (22).

(-)-Ambrox (**9**) was biotrasformed by *A. niger* for 9 days in the presence of 1-aminobenzotriazole, an inhibitor of cytochrome P-450 to afford compounds (**26**)(41%) and (**27**)(31%), instead of compounds (**20**~**23**), which were obtained by the incubation of **9** for only one day in the absence of an inhibitor. The structures of compounds (**26**) and (**27**) were determined as 3β-hydroxy-(-)-ambrox and 3-oxo-(-)-ambrox, respectively by their 600 MHz 2D-NMR spectra and comparison of 13C NMR spectra with those of **9** . Thus, the carbon signals at C-2, C-3 and C-4 positions of **26** and **27** appeared at lower field in comparison with that of **9** as shown in Figure 6. Possible metabolic pathways of **9** by *A. niger* might be considered as shown in Figure 7.

Figure 6. Comparison of 13C NMR spectra of compounds (**1**, **26** and **27**).

Figure 7. Metabolic pathways of (-)-ambrox (**9**) by *Aspergillus niger*.

(-)Ambrox (**9**) was cultivated by *A. cellulosae* for 4 days in the same medium and procedure as described above to afford compounds (**28**)(41.3%) and (**29**)(1.6%) as shown in Figure 8. The structure of **28** was established as 1β-hydroxy-(-)-ambrox by X-Ray crystallographic analysis as shown in Figure 9. The structure of **29** was determined as 1-oxo-(-)-ambrox, since the same compound was obtained from **28** by

Figure 8. Biotransformation of (-)-ambrox (**9**) into **28** and **29** by *A. cellulosae* and chemical conversion of **28** into **29**.

Figure 9. ORTEP drawing of compound (**28**).

It is noteworthy that the metabolic pathways of **9** are strikingly different between *A. niger* and *A. cellulosae.* In *A. niger*, oxidation at C-3 and C-18 and ether cleavage reaction between C-8 and C-12 occurred to afford **20**~**23**, while oxidation at C-1 occurred in *A.cellulosae* to afford **28** and **29**. The ether cleavage reaction occurred in biotransformation by microorganisms is very rare. Fragrances of compounds (**20**~**29**) obtained by biotransformation of (-)-ambrox (**9**), and 7α-hydroxy-(-)-ambrox (**30**) and 7-oxo-(-) ambrox (**31**) obtained by the chemical degradation of labda-12,14-dien-7α, 8α-diol (**19**) were estimated. Only compound (**29**) indicated a good odor like (-)-ambrox (**9**), but the other compounds did not show an effective odor.

2. Biotransformation of dehydrocostuslactone (2) isolated from Saussureae Radix

Dehydrocostuslactone (2) and costunolide (3) were isolated from Saussureae Radix $()$ as the major components. Recently, H. J. Lee *et al*. 13 reported that dehydrocostuslactone (**2**) inhibited the expression of inducible nitric oxide (NO) syntheses and TNF-α in LPS-activated macrophages. To examine the structure-activity relationship between dehydrocostuslactone (**2**) and their related compounds, biotransformation of **2** was carried out by microorganisms such as *A. niger*, *A. cellulosae* and *Botryospaeria dothidea* etc. The Et₂O extract (51.088 g) of dry material (2.0 kg) of Saussureae Radix was chromatographed on silica gel with a gradient solvent system of *n*-hexane-AcOEt to afford dehydrocostuslactone (**2**) (10.74 g) and costunolide (**3**) (7.04 g). The former lactone (**2**) was treated with *A. niger* in the same medium as shown in the biotransformation of (-)-ambrox (**9**) for 7 days to give four metabolites (**32**)(12.5 %), (**33**) (28.1%), (**34**)(15.1%) and (**35**)(8.1%)(Figure 10), while **2** was cultivated with *A. niger* for 10 days to afford four metabolites (**34**)(8.2 %), (**35**)(20.7%), (**36**)(1.1%) and (**37**)(2.1%)(Figure 10).

Figure 10. Metabolites from dehydrocostuslactone (**2**) by *Aspergillus niger*.

The NaBH4 reduction of **2** in EtOAc afforded **32** (72.7%) as a major product, and **38** (5.6%) as a minor product, whereas the biotransformation of **2** by *A. niger* afforded only **32**. Compound (**32**) showed the NOEs between (i) H-6 and H-11 and (ii) H-7 and H-13 in the NOESY spectra (Figure 11). On the other hand, compounds (38) showed the NOEs between (i) H-6 and H-13 and (ii) H-7 and H-11 (Figure 11). Thus, the stereostructures of **32** and **38** were formulated as 11β,13-dihydro- and 11α,13-dihydro derivatives of **2**, respectively.

Figure 11. NOEs in NOESY spectra of compounds (**32**) and (**38**).

Compounds (35) and (36) showed the same molecular formulae, $C_{15}H_{22}O_4$ and the similar spectral data $(IR, {}^{1}H$ and ${}^{13}C$ NMR). Oxidation (NaIO₄ / EtOH-H₂O) of **35** and **36** gave the same product, 10-oxo compound (**39**)(IR; 1703 cm-1; 13C NMR: 211.8) indicating that both compounds (**35**) and (**36**) were 10, 14-dihydroxy derivative of **2** and stereoisomers at C-10 as shown in Figure 12. Compound (**35**) showed the NOEs between (i) H-1 and H-14 and (ii) H-9α and H-14 in the NOESY spectra (Figure 12). On the other hand, compound (**36**) showed the NOEs between (i) H-2β and H-14, (ii) H-3β and H-14 and (iii) H-9β and H-14 in the NOESY spectra (Figure 12). Thus, the stereostructures of **35** and **36** were formulated as 10b, 14-dihydroxy-11β,13-dihydrodehydrocostuslactone and 10α,14-dihydroxy-11β,13-dihydrodehydrocostuslactone, respectively.

Figure 12. Oxidation of compounds (**35**) and (**36**) with NaIO4, with NOEs of NOESY spectra of compounds (**35**) and (**36**).

In time course (Figure 13) of biotansformation of dehydrocostuslactone (**2**) by *A. niger*, the yield of **32** increased with decreasing that of **2**, subsequently the yields of **33** and **34** increased with decreasing that of **32**, and finally the yield of **35** increased with decreasing that of **33**. In time course (Figure 14) of biotansformation of **2** by *A. niger* in the presence of an inhibitor of cytochrome P-450, compound (**2**) was completely converted into 11β,13-dihydro derivative (**32**) for 3 days, however further biotransformation of resulting lactone did not occur for 10 days.

Dehydrocostuslactone (**2**) was cultivated for 10 days by *A. cellulosae* to afford compounds (**32**)(82.0%) and (**40**)(1.6%). In time course (Figure 15) of biotansformation of dehydrocostuslactone (**2**) by *A. cellulosae*, **2** was almost converted into **32** for only one day, and **32** was slowly converted into **40** from 8 day. The structure of 40 was determined as 8β -hydroxy-11 β ,13-dihydrodehydrocostuslactone, by the 2D-NMR spectra and comparison of 13C NMR spectra (Figure 16) with that of **2**. The carbon signals at C-7, C-8 and

C-9 positions of **40** appeared at lower field in comparison with that of **2**. Compound (**40**) showed the NOEs between (i) H-7 and H-8, (ii) H-8 and H-13 in the NOESY spectrum (Figure 16).

Figure 13. Time course of biotransformation of dehydrocostuslactone (**2**) by *Aspergillus niger*.

Figure 14. Time course of biotransformation of dehydrocostuslactone (**2**) by *A. niger* under the presence of cytochrome P-450 inhibitor (1-aminobenzotriazole).

Figure 15. Time course of biotransformation of dehydrocostuslactone (**2**) by *Aspergillus cellulosae*.

Figure 16. Comparison of 13C NMR spectra of compounds (**2**) and (**40**), and NOEs in NOESY spectrum of **40**.

Plausible metabolic pathways of dehydrocostuslactone (**2**) by *A. niger* and *A. cellulosae* are shown in Figure 17. Both microorganisms firstly reduced compound (**2**) stereoselectively to afford **32**. It is noteworthy that the metabolic pathways of **32** are strikingly different between *A. niger* and *A. cellulosae*. In *A. niger*, compound (**32**) was converted into 10β,14-epoxide (**33**), as a major product and 10α,14-epoxide (**41**) as a minor product. Subsequently, compound (**33**) was converted into **35**, and compound (**41**) was converted

into **36** and **37**. In *A. cellulosae*, compound (**32**) was converted into **40** very slowly.

Dehydrocostuslactone (**2**) was biotransformed by the plant pathogen *Botryospaeria dothidea* for 4 days to afford compounds (**32**)(GC-MS peak area: 84%; isolated yield: 37.8%) and **38** (GC-MS peak area: 16%; isolated yield: 8.6%), whereas the biotrasformation of **2** by *Asp. niger* IFO4049 (4 days) and *A. cellulosae* (1 day) afforded only 32. Thus, *B. dothidea* showed low stereoselectivity to reduce C_{11} - C_{13} double bond. Biotransformations of dehydrocostuslactone (**2**) by various microorganisms were summarized in Table 1.

Figure 17. Possible metabolic pathways of dehydrocostuslactone (**2**) by *A. niger* and *A. cellulosae*.

Å Microorganisms $\frac{1}{H}$ \overline{c} Dehydrocostuslactone	Â. Å	11 Â $\frac{1}{2}$ un 13 32	Ā. Â 高 38	Â \blacksquare 13 33	Hom(on i	А Å o n 34
Microorganisms	Time	$\overline{2}$	32	38	33	34
Aspergillus niger	4 days	81 %*	19%	0%	0%	0%
A. niger IFO 4049	4 days	0%	100 %	0%	0%	0%
A. niger IFO 4034	4 days	0%	16%	0%	29%	56 %
A. cellulosae IFO 4040	1 day	0%	100%	0%	0%	0%
A. awamori IFO 4033	4 days	0%	56 %	0%	0%	44 %
A. terreus IFO 6123	4 days	0%	43 %	0%	0%	57 %
Botryospaeria dothidea	4 days	0%	84 %	16 %	0%	0%

Table 1. Biotransformation of dehydrocostuslactone (**2**) by microorganisms. *The Yields of metaboletes were calculated by GC-MS.

3. Biotransformation of \mathbf{a} **-,** β **-, and** $\mathbf{\Phi}$ **-cyclocostunolides (4~6)**

Clark and Hufford¹⁴ reported that a germacrane-type sesquiterpene lactone, costunolide (3) , the second major component from Saussureae Radix was biotransformed by *A. niger* to afford three eudesmane-type sesquiterpenoids, **42**~**44** (Figure 18). It is well known that **3** is easily converted into eudesmane-type sesquiterpenoids, α- (**4**), β- (**5**) and γ-cyclocostunolides (=arubusculin B)(**6**), and 4α-hydroxycyclocostunolide (= arubusculin A)(**45**) by diluted acid (Figure 18). If the crude drugs containing costunolide (**3**) are administrated orally, **3** will be easily converted into **4**~**6** and **45** by acid in the stomach as shown in the bottom of Figure 18.

After costunolide (3) was treated with one drop of thionyl chloride in CHCl₃ for 30 min at room temperature to afford α- (4)(11.4%), β - (5)(38.2%), and γ-cyclocostunolides (6)(8.5%), biotransformations of **4**~**6** were carried out by *A. niger*, *A. cellulosae* and *B. dothidea*.

α-Cyclocostunolide (**4**) was cultivated by *A. niger* for 3 days to afford compounds (**46**)(7.6%), (**47**)(4.4%), (**48**)(9.9%) and (**49**)(34.1%), respectively (Figure 19).

Figure 18. Reaction mechanism of costunolide (**3**) by acid into compound (**4**, **5**, **6** and **45**).

Figure 19. Metabolites from α-Cyclocostunolide (**4**) by *A. niger* and *A. cellulosae*.

The IR and UV spectra of compound (46) , $C_{15}H_{20}O_3$ (HRMS; [M]⁺ m/z 248.1402) indicated the presence of an α, β-conjugated ketone $[(1664 \text{ cm}^{-1}; \lambda_{\text{max}} 238 \text{ nm} (\text{log} \epsilon = 4.07)]$. The structure of 46 was elucidated as 2-oxo-11β,13-dihydro derivative of **4** by 2D-NMR (HMBC, NOESY etc.). The structures of **47** and **48** were elucidated as 1β-hydroxyl- and 13-hydroxyl derivatives of **46**, respectively by the 2D-NMR spectra. The molecular formula of **49** was determined to be $C_{20}H_{28}O_6S$ (CI-HRMS; [M]⁺+1; m/z 397.1703). Its IR, and ¹H and ¹³C NMR spectra indicated the presence of a secondary alcohol [3447 cm⁻¹; δ_H 4.44 (dd, J=3.8, 5.8 Hz); δ_c 70.9 (d)] and a carboethoxy [1745 cm⁻¹; δ_H 1.32 (t, J=7.1 Hz), 4.28 (q, J=7.1 Hz); δ_c 14.2 (q), 62.1 (t), 172.9 (s)]. Acetylation (Ac_2O / Py) of **49** afforded an acetate (50) $[\delta_H 2.18$ (s), 5.26 (dd, J=4.7, 6.9 Hz)] indicating the the presence of a secondary hydroxyl group. The structure of **49** was elucidated by the 2D NMR (HMBC etc.) spectra and comparison of 13C NMR spectra (Figure 20) between **46** and **49**. The carbon signals of the eudesmane-skeleton moiety of **49** were similar to those of **46** except for that of C-13. Compound (**49**) indicated the correlations between (i) H-13 and C-3', (ii) H-2' and C-3', (iii) H-2' and C-1', (iv) H-4' and C-1' in the HMBC spectrum. The above results indicated that **49** contained a sulfide linkage between C-13 and ethyl 2-hydroxy-3-mercaptopropanate.

Figure 20. Comparison of 13C NMR spectra of compounds (**46** and **49**), HMBC correlations of **49**, and acetylation of **49** into **50**.

α-Cyclocostunolide (**4**) was cultivated for 3 days by *A. cellulosae* to afford a sole metabolite, 11β, 13-dihydro-acyclocostunolide (**51**), whereas the biotrasformation of **4** by *A. niger* gave the complex metabolites as described above.

Possible metabolic pathways of α-cyclocostunolide (**4**) by *A. niger* and *A. cellulosae* are shown in Figure 21. A double bond at C_{11} -C₁₃ of compound (4) by both of microorganisms was firstly reduced stereoselectively to afford **51**. In *A. niger,* compound (**51**) was subsequently converted into **46** by oxidation at C-2 which was further converted into 1β-hydroxyl- and 13-hydoxyl derivatives (**47** and **48**). The sulfide compound (**49**) might be obtained from **48** or by Michael condensation of ethyl 2-hydroxy-3- mercaptopropanate into exomethylene group of α-cyclocostunolide (**4**) as shown in Figure 21.

Figure 21. Possible metabolic pathways of α -cyclocostunolide (4) by *Aspergillus niger* and *A. cellulosae*.

β-Cyclocostunolide (**5**) was cultivated for 7 days by *A. niger* to afford compounds (**46**)(15.2%), (**47**)

(7.6%), (**52**)(6.8%), (**53**)(1.8%), (**54**)(3.2%) and (**55**)(3.9%), respectively (Figure 22).

Figure 22. Metabolites from β-cyclocostunolide (**5**) by *Aspergillus niger*.

The IR, and ¹H and ¹³C NMR spectra of 52 indicated the presence of a secondary hydroxyl group [3450] cm⁻¹; δ_H 3.89 (m); δ_C 67.2 (d)]. The structure of **52** was determined as 2α -hydroxy-11 β , 13-dihydro- β cyclocostunolide by NOESY spectrum (Figure 23) in which NOEs were observed between (i) H-2 and H-14, (ii) H-2 and H-3b, (iii) H-6 and H-11, and (iv) H-7 and H-13. The structures of **53** and **54** were determined as 1β,2α-dihydroxy-11β,13-dihydro-β-cyclocostunolide and 2α,13-dihydroxy-11β,13-dihydroβ-cyclocostunolide by analyses of their 2D NMR (HMBC etc.) spectra and comparison of the 13C NMR

spectra with those of **52**.

Figure 23. NOEs in NOESY spectrum of compound **52**.

The molecular formula of 55 was determined to be $C_{20}H_{30}O_6S$ by CI-HRMS ($[M]^+$ 1; m/z 399.1842). The structure of **55** was determined by the 2D NMR (HMBC etc.) spectra and comparison of 13C NMR spectra (Figure 24) with those of **49** and **52**. The carbon signals of the eudesmane-skeleton moiety in **55** were similar to those of **52** except for that of C-13. The carbon signals of ethyl 2-hydroxy-3-mercaptopropanate (C-1'~C5') and C-13 in **55** were similar to those of **49** (Figure 20). The above results indicated that 5 5 contained a sulfide linkage between C-13 and ethyl 2-hydroxy-3-mercaptopropanate which might originate from Czapek-pepton medium by *A. niger*.

Figure 24. Comparison of 13C NMR spectra of compounds (**52**) and (**55**), and HMBCs of **55**.

It was suggested that compound (**46**) was obtained by oxidation of **52**, followed by isomerization of a double bond between C-4 and C-15 into C-3 and C-4. In fact, oxidation (PDC / CH_2Cl_2) of compound (**52**) afforded compound (**46**). However it is possible that compounds (**46**) and (**47**) might be formed during biotransformation period since the metabolite solution after 7 days was acidic (pH=2.7).

β-Cyclocostunolide (**5**) was biotransformed by *A. cellulosae* to afford a single metabolite, 11β,13 dihydro-β-cyclocostunolide (**56**). The stereostructure of **56** was determined by its X-Ray crystallographic analysis as shown in Figure 25. A metabolite (**56**) was abnormally folded in mycelium of *A. cellulosae as* a crystal form after biotransformation of **5**, whereas metabolites were normally liberated in medium outside of mycelium of *A. niger* and *B. dothidea* after biotransformation of the sesquiterpenoids used in this experiment.

Figure 25. ORTEP darwing of compound (**56**).

β-Cyclocostunolide (**5**) was biotransformed by *B. dothidea* to afford 11α,13-dihydro-β-cyclocostunolide (**57**)(37.8%) as a major product, and 11β,13-dihydro-β-cyclocostunolide (**56**)(16.7%) as a minor product. *B. dothidea* has no stereoselectivity to reduce C_{11} - C_{13} double bond. To compare the metabolic products (**56** and **57**) with synthetic dihydro derivatives of **5**, NaBH4 reduction of **5** in EtOAc was carried out to give **56** (78.0%) as a major product, and **57** (1.2%) as a minor product. The stereostructures of **56** and **57** were determined by NOESY spectrum (Figure 26).

Plausible metabolic pathways of β-cyclocostunolide (**5**) by *A. niger* and *A. cellulosae* might be considered as shown in Figure 27. A double bond at $C_{11}-C_{13}$ of 5 by both microorganisms was firstly reduced stereoselectively to afford **56**, which was converted into 2β-hydroxyl compound (**52**) by hydroxylation at C-2, followed by hydroxylation at C-1 and C-13 to give **53** and **54**, respectively. Compound (**52**) was converted into **46** and **47** through intermediate (**58**) by oxidation, followed by isomerization of a double bond asmentioned above. The sulfide compound (**55**) might be biotransformed from **54** or by Michael

condensation of ethyl 2-hydroxy-3-mercaptopropanate into exomethylene group of β-cyclocostunolide (**5**) as shown in α-cyclocostunolide (**4**). It is noteworthy that both α- and β-cyclocostunolides (**4** and **5**) were biotransformed by *A. niger* to afford the sulfide compounds (**49** and **55**).

Figure 26. Coversion of β-cyclocostunolide (**5**) into compounds (**56**) and (**57**) with NOEs of NOESY spectra of compounds (**56**) and (**57**).

Figure 27. Possible metabolic pathways of β−cyclocostunolide (**5**) by *Aspergillus niger* and *A. cellulosae*.

γ-Cyclocostunolide (=arbusculin B)(**6**) was cultivated by *A. niger* for 2 days to afford compounds (**16**) (8.0%), (**58**)(8.5%), (**59**)(8.4%), (**60**)(8.4%) and (**61**)(5.3%), respectively. The structure of **16** was identified as 1, 2-dihydo-α-santonin (16) obtained by catalytic hydrogenation $[(Ph_3P)_3RhCl/H_2]$ of α-santonin (7). The NaBH4 reduction of **16** in MeOH afforded **58** (84.3%) as a major product, and **59** (1.2%) as a minor product, whereas the biotransformation of **6** by *A.niger* afforded **58** and **59** in almost same yields. Compound (**58**) was recultivated for 2 days by *A. niger* to afford compound (**61**)(54%) by rearragement of a hydroxyl group as a major product and compound (**16**)(25%) by oxidation at C-3 as a minor product. On the other hand, compound (**59**) was recultivated for 2 days by *A. niger* to afford compound (**16**)(100%) as a single metabolite. Possible metabolic pathways of γ-cyclocostunolide (**6**) by *A. niger* are shown in Figure 28. No sulfur-containing metabolite was obtained from biotransformation of **6**.

γ-Cyclocostunolide (**6**) was biotransformed by *A. cellulosae* and *B. dothidea*, respectively to afford a single metabolite, 11β,13-dihydro-γ-cyclocostunolide (**56**) as shown in Figure 28.

Figure 28. Possible metabolic pathways of γ-cyclocostunolide (**6**) by *A. niger*, *A. cellulosae* and *B. dothidea*.

4. Biotransformation of a**-santonin (7) isolated from Cinae Flos**

α-Santonin (**7**) isolated from Cinae Flos has been used as vermicide against roundwarm. It has been reported that biotransformation of α-santonin (**7**) by *Cunninghamella blakesleena*15 and *A. niger* 16 gave 1,2-dihydro-α-santonin (**16**). In order to obtain a few substrates from α-santonin (**7**), some chemical reactions were carried out. Catalytic homogenous hydrogenation of 7 with $(Ph_3P)_3RhCl$ in EtOAc by Sims's method¹⁷ gave 1,2-dihydro-α-santonin (16) in 93% yield. The catalytic hydrogenation of 7 over 2%Pd-SrCO₃ in EtOAc gave 1,2,4α,5α-tetrahydro-α-santonin $(17)(69%)^{18}$ and a new hydroperoxide (62) (11%) which was determined as a 4β-hydroperoxy derivative by X-Ray crystallographic analysis as shown in Figure 29, but the mechanism of formation of **62** remained to be clarified. The epimerization of compound (**17**) possessing a β (*axial*)-methyl group at C-4 by 2M-HCl in EtOH gave 1,2,4β,5α-tetrahydroα-santonin (**18**)(97 %). 18

Figure 29. Chemical conversions of a-santonin (**7**) into 1, 2-dihydro- and 1, 2, 4, 5-tetrhydroα-santonins (**16**, **17** and **18**), and ORTEP darwing of compound (**62**).

Biotransformations of compounds (**7** and **16**~**18**) were carried out by *A. niger*. α-Santonin (**7**) was cultivated for 7 days by *A. niger* to afford compounds (**63**)(18.2%), (**64**)(2.3%), (**65**)(19.3%) and (**66**)(3.5%) with recovered starting material (**7**)(57.0%), respectively. Compounds (**63**) and (**64**) showed the same molecular formulae, $C_{15}H_{18}O_4$, and the similar spectral data. The IR, and ¹H and ¹³C NMR spectra of 63 indicated the presence of a tertiary hydroxyl group [3312 cm⁻¹; δ_c 71.9 (s)]. Its structure was determined as 11-hydroxy-α-santonin by 2D-NMR (HMBC, NOESY etc.). Compound (**63**) was isolated from dog urine after ingestion of **7** to dog.19 It is noteworthy that the metabolic pathway of **7** by *A. niger* is very similar to that of oral administration of dog. The IR, and ¹H and ¹³C NMR spectra of 64 indicated the presence of a primary hydroxyl group $[3433 \text{ cm}^{-1}; \delta_{\text{H}} 3.84 \text{ (dd, J=4.1, 11.5 Hz)}, 3.93 \text{ (dd, J=4.7, 11.5 Hz)};$ δ_c 58.4 (t)]. Its structure was determined as 13-hydroxy- α -santonin by the 2D-NMR (HMBC etc.) spectra and the comparison of 13C NMR spectra (Figure 30) with those of **7** and **63**.

Figure 30. Comparison of 13C NMR spectra of compounds (**7**, **63** and **64**), and NOE of NOESY spectrum of **63**.

The IR UV, and ¹H and ¹³C NMR spectra of compound (65), $C_{15}H_{20}O_4$ (HRMS; [M]⁺ m/z 248.1402) indicated the presence of a primary hydroxyl group [3356 cm⁻¹; δ_H 3.49 (m); δ_C 59.3 (t)], a 1, 2, 3, 4-tetrasubstituted benzene ring [1591 cm⁻¹; δ_H 6.71 (d, J=8.2 Hz), 6.85 (d, J=8.2 Hz); δ_C 114.9 (d), 123.6 (s), 127.5 (s), 129.3 (d), 133.3 (s), 153.5 (s)] and two aryl methyl $[\delta_H 2.22$ (s), 2.28 (s)] groups. The stereochemistry of **65** was characterized by the 2D-NMR (HMBC, NOESY etc.) spectra as shown in

Figure 31.²⁰ Compound (66) was identified as lumisantonin²¹ obtained by the photoreaction of 7. Possible metabolic pathways of **7** by *A. niger* are shown in Figure 32. In our present experiment, α-santonin (**7**) was not converted into 1, 2-dihydro-a-santonin (16) by *A. niger*, whereas Att-ur-Rahman¹⁶ reported that *A. niger* transformed **7** to a single metabolite (**16**). This result might be due to difference of two *A. niger* strains.

Figure 31. The HMBCs and NOEs of compound (**65**).

Figure 32. Possible metabolic pathways of (-)-α-santonin (**7**) by *Aspergillus niger* and dog.

1,2-Dihydro-α-santonin (**16**) was cultivated for 7 days by *A. niger* to afford compounds (**60**)(39.1%), (**67**)(6.5%), (**68**)(6.9%) and α-santonin (**7**)(5.4%), respectively. Their structures were determined as 2βhydroxy-, 1β-hydroxy- and 9β-hydroxy-1, 2-dihydro-α-santonins, respectively by those 2D-NMR (HMBC etc.) spectra and comparison of 13C NMR spectra with that of **7** as shown in Figure 33. Compound (**60**) was also obtained by the biotransformation of γ-cyclocostunolide (**6**) by *A. niger*. α-Santonin (**7**) might be obtained by dehydration of **60** or **67**.

Figure 33. Comparison of 13C NMR spectra of compounds (**16**, **60**, **67** and **68**), and HMBCs of compounds (**60**, **67** and **68**).

1,2,4β,5α-Tetrahydro-α-santonin (**18**) was cultivated for 3 days by *A. niger* to afford compounds (**69**) (13.5%), (**70**)(10.6%), (**71**)(12.8%), (**72**)(21.4%), (**73**)(16.9%) and (**74**)(6.8%), respectively. Their structures were established by 2D-NMR (COSY, NOESY, HSQC and HMBC). Compound (**18**) was biotrasformed by *A. niger* in the presence of 1-aminobenzotriazole, an inhibitor of cytochrome P-450 to afford a single metabolite (**69**), without **70**~**74**. Possible metabolic pathways of **18** by *A. niger* are indicated in Figure 34.

Figure 34. Possible metabolic pathways of tetrahydrosantonin (**18**) by *Aspergillus niger*.

On the other hand, 1,2,4α,5α-tetrahydro-α-santonin (**17**) was cultivated for 3 days by *A. niger* to afford a single metabolite (**75**)(73%) by stereoselective reduction at C-3 as shown in Figure 35. The reason why further oxidation of **75** did not proceed might be due to the steric hindrance of a β (*axial*)-methyl group at C-4.

Figure 35. Biotransformation of tetrahydro-α-santonin (**17**) by *Aspergillus niger*.

Atractylon (8) from Atractylodis Rhizoma () was biotransformed by *A. niger* to atractylenolide III $(76)(8.2%)$ possessing an interesting biological activity such as inhibition of increased vascular permeability²² in mice induced by acetic acid as shown in Figure 36.

Figure 37. The biotransformations of the chemical constituents isolated from crude drugs.

On the basis of above experimental results, the biotransformations of the chemical constituents isolated from crude drugs by *A. niger*, *A. cellulosae, B. dothidea* and mammals (rabbit or dog) are summarized in Figure 37. The metabolic pathways of terpenoids (or terpene lactones) by *A. niger* were very similar to those by mammals, but very different from those by *A. cellulosae*. The stereoselectivity of reduction at $C_{11}-C_{13}$ double bond of α -methylene-γ-butyrolactone has not been observed in the plant pathogen *Botryospaeria dothidea.*

The biological test of the metabolites against $TNF-\alpha$ release inhibition are now under progress. The structure elucidation of each new metabolite will be reported elsewhere.

REFERENCES

- 1. Y. Noma and Y. Asakawa, *Biotechnology in Agriculture and Forestry*, ed. by Y. P. S Bajaj, Vol. **28**, p. 185, Berlin, Springer, 1994.
- 2. Y. Noma and Y. Asakawa, *Biotechnology in Agriculture and Forestry*, ed. by Y. P. S Bajaj, Vol. **33**, p. 62, Berlin, Springer, 1995.
- 3. Y. Noma and Y. Asakawa, *Biotechnology in Agriculture and Forestry*, ed. by Y. P. S Bajaj, Vol. **41**, p. 194, Berlin, Springer, 1998.
- 4. T. Matsumoto, N. Hayashi , T. Ishida, and Y. Asakawa, *J. Pharm. Sci.,* 1990, **79**, 540.
- 5. T. Matsumoto, T. Ishida, T. Yoshida, H. Terao, Y. Takeda, and Y. Asakawa, *Chem. Pharm. Bull*., 1992*,* **40**, 1721.
- 6. Y. Asakawa, H. Takahashi, and M. Toyota, *Phytochemistry*, 1991, **30**, 3993.
- 7. H. Takahashi, T. Hashimoto, Y. Noma, and Y. Asakawa, *Phytochemistry*, 1993, **34**, 1497.
- 8. Y. Noma, T. Hashimoto, A. Kikkawa, and Y. Asakawa, 40 th Symposium on Chemistry of Terpenes, Essential Oils and Aromatics, Saga, Japan, Symposium Papers, 1996, p. 95.
- 9. Y. Noma, T. Hashimoto, S. Kato, and Y. Asakawa, 41 st Symposium on Chemistry of Terpenes, Essential Oils and Aromatics, Iwate, Japan, Symposium Papers, 1997, p. 224.
- 10. T. Hashimoto, Y. Noma, S. Kato, M. Tanaka, S. Takaoka, and Y. Asakawa, *Chem. Pharm. Bull.*, 1999, **47**, 716.
- 11. K. Lie, M. Toyota, and Y. Asakawa, unpublished data.
- 12. T. Hashimoto, K Shiki, M. Tanaka, S. Takaoka, and Y. Asakawa, *Heterocycles*, 1998, **49**, 315.
- 13. H. J. Lee, N. Y. Kim, M. K. Jang, H. J. Son, K. M. Kim, D. H. Sohn, S. H. Lee, and J.-H. Ryu, *Planta Medica,* 1999, **65,** 104.
- 14. A. M. Clark and C. D. Hufford, *J. Chem. Soc*., *Perkin Trans. I,* 1979, 3022.
- 15. H. Hikino, Y. Tokuoka, and T. Takemoto, *Chem. Pharm. Bull.*, 1970, **18**, 2127.
- 16. Att-ur-Rahman, M. I. Choudhary, F. Shaheen, A. Rauf, and A. Farooq, *Nat. Prod. Lett.*, 1998, 215.
- 17. J. J. Sims, V. K. Honwad, and L. H. Selman, *Tetrahedron Lett*., 1969, 87.
- 18. M. Ando, T. Wada, H. Kusaka, K. Takase, N. Hirata, and Y. Yanagi, *J. Org. Chem*., 1987, **52**, 4792.
- 19. J. T. Pinhey and S. Sternhell, *Aust. J. Chem*., 1965, **18**, 543.
- 20. M. Iida, A. Mikami, K. Yamakawa, and K. Nishitani, *J. Ferment. Technol.*, 1988, **66**, 51.
- 21. D. Arigoni, H. Bosshard, H. Bruderer, G. Büchi, O. Jeger, and L. J. Krebaum, *Helv. Chim. Acta*, 1957, **40**, 1732.
- 22. K. Endo, T. Taguchi, F. Taguchi, H. Hikino, J. Yamahara, and H. Fujimura, *Chem. Pharm. Bull.*, 1979, **27**, 2954.