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A NEW ROUTE TO (-)-APHANORPHINE USING A
DIOXABICYCLO[3.2.1]0OCTANE CHIRAL BUILDING BLOCK"

Add S. EIAzab, Takahiko Taniguchi, and Kunio Ogasawara*
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-8578, Japan

Abstract — A new stereocontrolled route to (-)-aphanorphine, isolated from the
fresh-water blue-green agae Aphanizomenon flos-aquae has been developed by
using a chird building block having a dioxabicyclo[3.2.1]octane framework and
originaly designed for the construction of the aldohexose molecules.

Recently, we designed a chird building block (1) having a dioxabicyclo[3.2.1]octane framework for the
diastereodivergent synthesis of al of the eight possible diastereomers of adohexoses.* Owing to its biased
structure, (-)-1 dlowed convex-face selective modification of its enone functiondity leading to al of the

eight L-adohexose diastereomers in a diastereocontrolled manner.” We report here another use® of the

sugar building block for an dternative synthesis of (—)-aqohanorphine““6 (2), the only naturaly occurring

norbenzomorphan structure isolated from the fresh-water blue-green algae Aphanizomenon flos-aquae on
the basis of the same methodology employed in the sugar synthesis (Scheme 1).
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Enantiopure [(-)-1] was reduced with diisobutylduminum hydride (DIBAL) in the presence of copper (1)
iodide in THF containing hexamethylphosphoric triamide (HMPA) to give the ketone (3), [a],*° +37.4°
(cl.1, CHCI;). On reaction with iodomethane in the presence of lithium hexamethyldisilazide (Li-HMDS)

in THF containing HMPA,7 3 afforded a 2.5:1 mixture of the monomethylated ketone (4), which was

C,3

refluxed with 4-methoxyphenylhydrazine hydrochloride in 90% agueous pyridine®® to give rise to the

tDedicated to Prof. James P. Kutney, University of British Columbia, on the occasion of his 70th birthday.
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Scheme 2

Reagents and conditions: (i) DIBAL, Cul, HMPA, THF, —78C (89%). (ii) Li-HMDA, Mel, HMPA,
THF, —78~-30C (72%). (iii) 4-MeOC,H,NHNH,-HCI, 90% ag. pyridine, reflux (92%). (iv) H,PO,,
NaNO,, Et,0, AcOH, 0C ~ rt. (81%) (v) NaBH MeOH, 0°C (100%). (vi) CS,, Mdl, NaH, THF
(95%) (vu) Bu,SnH, AIBN (cat.), benzene, reflux (95%) (viii) Raney Ni (W-2), EtOH reflux (ix)
MsCI, Et;N, CH,CI,, 0°C. (x) Lil, THF, reflux (94% from 12).

carbinol amine (8), [a],*® —88.7°(c 1.0, CHCl,), asasingle product. Apparently, the reaction proceeded
through a convex-face sdlective 3,3-sigmatropic pathway via a diaza-1,5-diene intermediate 5 to give a
transient imine (6) from which 8 was resulted via the amino-ketone (7) with hydrolytic loss of an anmonia
under the conditions. This indicated that convex-face selectivity prevails even in the intramolecular reaction
owing to the inherent steric nature of abicyclo[3.2.1]octane system. To diminate the extra aromatic amine
functiondity, 8 was exposed to sodium nitrite and hypophosphorus acid®™ to initiate diazotization under
reductive conditions. The expected reaction did occur to furnish the ketone (9), [a],?® —=31.9° (¢ 1.0,
CHCI,), in good yield. Since a single-step reduction of the carbonyl functiondity of 9 under Wolff-
Kishner conditions failed, 9 was first reduced with sodium borohydride to give the endo-acohol (10),
[a],*° =7.2° (c 0.4, CHCl,), which then was converted into the xanthate (11), [a],?® +32.1° (c 1.0,



CHCI;). On reflux with tributylstannane in benzene in the presence of a catalytic amount of
azobisisobutyronitrile (AIBN),™ (11) afforded the deoxygenation product (12), [o],*° +36.2° (c 1.9,

CHCI,), excdlently. To cleave the dioxolane functiondity, which was found to be sturdy under standard
acid-hydrolysis conditions, 12 was transformed into the iodide (15) through a sequentia debenzylation

with Raney nickdl (W-2),"* mesylation of the primary acohol (13), [a],?° +66.3° (¢ 1.1, CHCL),
obtained, followed by substitution of the resulting mesylate 14 with lithium iodide to yield the iodide 15,
[a],*° +2.8°(c 1.1, CHCI,). Overdl yield of 15 from the starting building block (1) was 41% in ten steps
(Scheme 2).

Theiodide (15) was then refluxed with zinc in ethanol containing acetic acid™* to initiate reductive cleavage
to give the hemiaceta (16), as an epimeric mixture, which afforded the &-lactone (17), [a] ¥ +35.7° (¢ 1.2,

CHCI;), on oxidation with tetrgpropylammonium perruthenate13 (TPAP) in the presence of 4-
methylmorphorine N-oxide. Cleavage of the vinyl functiondity of 17 was next carried out in a two-step
seguence involving catalytic dihydroxylation and periodate cleavage14 to givethe ddehyde (18). When 18

was refluxed with zinc in acetic acid intending to initiate cleavage of the a-oxygen bond of the formyl

functionality, ' the reaction proceeded more easily than we anticipated. Gratifyingly, the product generated
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Scheme 3

Reagents and conditions: (i) Zn, AcCOH-EtOH(1:10), reflux. (ii) TPAP(cat.), NMO, THF (96% from 15).
(iif) OsO,(cat.), NMO, 50% ag. THF, then NalO,, 50% ag. THF (83%). (iv) Zn, AcOH, reflux (69%). (v)
(PhO),P(O)N,, Et,N, benzene, sealed tube, 140°C, 1 h, then MeOH, 4 h (92%).



was found to be the dihyronaphthadene (20), a more advanced intermediate, though not the initialy
expected formyl-acid (19). Upon heating with diphenylphosphoryl azide™® (DPPA) in benzene containing
triethylamine in a seded tube a 140 °C for one hour and for four hours a the same temperature after
addition of methanol in the same sedled tube, 20 afforded the methyl carbamate® (22), [a],2® +6.6°(c 1.1,

CHCL){lit.,"[o] % +6.85° (c 0.9, CHCI,)}, through a formation of the isocyanate intermediate (21).

Since we have previously developed afive-step transformation'’ of [(+)-22] into (-)-gphanorphine (2), the
present acquisition of (+)-22 from the sugar building block [(—)-1] constitutes an dternative synthesis of
the naturd products in a forma sense. Overdl yidd of (+)-22 from theiodide 15 was 51% in five isolated
steps and, thus, 21% from the block [(-)-1] in 15 steps (Scheme 3).

In summary, we have demonstrated an dternative utilization of the chird building block originaly
developed for the construction of the aldohexose molecules for a concise synthesis of (—)-gphanorphine, the
only naturally occurring alkkaoid known to have the norbenzomorphan framework.
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