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SYNTHETIC STUDIES TOWARD HENNOXAZOLE A. USE OF A

SELECTIVE BISOXAZOLE ALKYLATION AS THE KEY FRAGMENT

COUPLING
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Abstract – A model system for side chain fragment coupling to the core of

hennoxazole A is investigated. Lateral metallation of a C13-TBS-protected

bisoxazole, using lithium diethylamide, allows for selective and efficient

alkylation at C15.

INTRODUCTION

Marine natural products containing the oxazole nucleus have drawn considerable attention recently

(Figure 1). Synthetic studies of complex molecules containing isolated 2,4-disubstituted oxazole units

such as the phorboxazoles,1 bisoxazoles such as the hennoxazoles2 and diazonamides,3 and trisoxazoles

such as the ulapualides,4 have contributed methods for the assembly of these systems and have resulted in

several total syntheses. The development of relatively mild oxazole-forming reaction sequences5 has

Figure 1.  Oxazole-Containing Marine Natural Products
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made the late-stage creation of these ring systems a common strategy—with cleavage of an oxazole ring

frequently serving as the key disconnection back to major coupling fragments.6 Approaches involving end

game functionalization of intact oxazole rings, however, provide the opportunity to use relatively simple

oxazoles as starting materials and then efficiently carry these, practically inert,7 heterocycles through a

variety of synthetic transformations.8 In consideration of these issues, our synthesis plan for hennoxazole

A (1, Scheme 1) involves late-stage construction of the C15–C16 bond by metallation of a relatively

elaborate bisoxazole (2) at the C15-methyl position, followed alkylation with an allylic halide C16–C25 side

chain fragment (3).9

Scheme 1.  Retrosynthetic Analysis for Hennoxazole A
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Synthetically useful lateral metallations of some 2-methyl-oxazole and -thiazole systems have been

reported.10 If these rings are unsubstituted at C5, however, competitive deprotonation of the C5-ring

hydrogen is frequently observed (Scheme 2).11 In fact, Williams has shown that bisoxazole 4 is lithiated

with n-BuLi exclusively at the C5'-ring position,12 suggesting that alkylation of 2 at C15 may be

problematic if R = H. Despite this result, previous work confronting a similar problem in the synthesis of

phorboxazole, demonstrated that the regioselectivity of some oxazole deprotonations can be altered by the

use of lithium diethylamide.13 As elaborated in the preceding communication,14 deprotonation of

Scheme 2.  Oxazole and Bisoxazole Alkylations
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2-methyl-4-phenyloxazole (6) using n-BuLi at –78 °C followed by alkylation with methyl iodide gives a

14:86 ratio of products (7:8) favoring ring methylation, while the use of LiNEt2 leads to alkylation solely

at the C2-methyl site. This reversal of regioselectivity is thought to arise from the ability of diethylamine

to mediate the low-temperature equilibration of a kinetic mixture of otherwise noninterconverting

lithiated intermediates (9 and 10).15

Herein we report our results  on a model fragment coupling for hennoxazole A using lithium

diethylamide.

RESULTS AND DISCUSSION

To test the viability of our key side chain coupling strategy, we first prepared bisoxazole (13) as a model

substrate (Scheme 3). Bisoxazole ester (11)16 was reduced with DIBAL-H in CH2Cl2 at low temperature

to give aldehyde (12)17 in quantitative yield. Dimethyl acetal (13) was then generated under Noyori

conditions18 in 93% yield. In results consistent with Williams’ studies of 4,12 treatment of bisoxazole (13)

with n-BuLi led to deprotonation exclusively at the C13 ring position (hennoxazole numbering), with no

deprotonation occurring at the C15-methyl group. For this substrate, replacing the base with LDA or

LiNEt2 did not alter the regioselectivity, suggesting that deprotonation at C13 is both kinetically and

thermodynamically favored.19 Attempts to alkylate the dianion of 13 were not fruitful. To circumvent this

dilemma, we chose to block C13 with a silyl protecting group.20 Although TMS and TES groups were

found to be too labile under these metallation conditions, the TBS group proved to be suitable. Treatment

of 13 with n-BuLi followed by addition of TBSOTf led to C13-protected bisoxazole (15) in 96% yield.

Scheme 3.  Preparation of a Hennoxazole Model System
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To model our key coupling step, we treated protected bisoxazole (15) with several different strong bases

and quenched with MeI (Scheme 4). Gratifyingly, alkylation occurred at the desired C15 site, with LiNEt2

providing the best results. It is interesting to note that n-BuLi and LDA both gave poor conversion and

small amounts of product 17—methylated at both at the C15-methyl and C10-ring positions—at the



expense of starting material conversion.21 No significant monomethylation at C10 was observed. We

speculate that this result could potentially arise from rate differences of the C10- and C15-anions with

respect to alkylation and intermolecular proton exchange. Chelation of lithium between C10 and an

oxygen atom of the C8-dimethyl acetal could decrease the reactivity at this center and lead to the observed

product mixtures. To better mimic the reactivity of the actual side chain fragment (3), we also alkylated

15 with allyl iodide and prenyl bromide, both of which gave excellent results with LiNEt2.
22 Finally,

treatment of alkylated products (18) and (19) with TBAF demonstrated that the oxazole could be cleanly

deprotected under mild conditions.23

Scheme 4.  Hennoxazole Side Chain Alkylation Model Studies
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CONCLUSION

Selective alkylation of a C8–C15 model for the bisoxazole portion of hennoxazole A is possible using

lithium diethylamide when the C13-position is blocked. Thus, modification of our initial retrosynthetic

analysis (Scheme 1) to include a silyl protecting group at C13 (R = TBS) should provide a successful

fragment coupling approach to hennoxazole A. Further reports on this synthesis will be forthcoming.
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