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Abstract – Modern methodologies of preparation and transformation of three-, four-, 

five- and six-membered heterocycles and their functional groups using silanes in the 

presence of fluoride ion have been reviewed. Syntheses of large sized heterocyclic 

compounds are also included. 
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INTRODUCTION 

 

Reactions of organosilicon compounds catalyzed by nucleophiles are under extensive study more than 

twenty five years. In this field two excellent reviews are published.1 Fluoride ion as activator of silicon 

bonds is widely described in these works. Some reactions of silyl derivatives of furans mediated by 

fluoride ion were described in reviews.2 Recently we have published two reviews dedicated to fluoride 

ion activation of silicon bonds in organic synthesis 3 and transition metal catalysed coupling reactions of 

silanes activated by fluoride ion.4 However, synthesis and transformations of heterocyclic compounds 

mediated by fluoride ion activation of silicon bonds were not included in these reviews. 

The aim is to describe modern methodologies in the synthesis of different classes of heterocyclic 

compounds mediated by fluoride ion activated organosilicon compounds. The influence of different 

sources of fluoride ion on processes and mechanisms of reactions will be discussed. Characteristic 

reactions in side chains of heterocyclic compounds are also presented.   

The literature data published between January 1994 and July 2001 are included in this review. 

 

THREE-MEMBERED RINGS 

1.1. Oxiranes 

The reaction of diphenylsulfonium methylide with carbonyl compounds is an excellent route to oxiranes. 

The necessary methylide (2) was successfully obtained by treatment of diphenyl(trimethyl-

silylmethyl)sulfonium triflate (1) with CsF in DMSO. The ylide formed reacted with carbonyl compounds 

to afford oxiranes (3) in yields up to 94% (Scheme 1).5 
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Stereoselective synthesis of (1S,2R)-N-tert-butoxycarbonyl-1-phenyl-2,3-epoxy-1-propylamine (5) from 

(1S,2S)-N-tert-butoxycarbonylamino-3-tert-butyldimethylsiloxy-2-mesyloxy-1-phenyl-1-propylamine (4) 

in the presence Bu4N+F- / THF was carried out. However, reaction mixture after reaction completion 

contained also 12% of aziridine (6) (Scheme 2).6 

 

Interaction of silylated cyclic sulfates with fluoride ion afforded anions of epoxy substituted sulfonic 

acids. For example, sulfate (7) in the presence of Bu4N+F- . 3 H2O / THF gave epoxide (8) as the main 

product (Scheme 3). Nucleophilic epoxide ring opening provides an excellent route to erythro-2,3-diols.7,8 

 

 

Synthesis of oxaspiropentene (11) was recently described. Thus, epoxidation of cis- or trans-1-

methylene-2-bromo-3-(trimethylsilyl)cyclopropane (9) by dimethyldioxirane followed by interaction of 

intermediate (10) with Bu4N+F- using the vacuum gas-solid reaction procedure led to oxirane (11) (Scheme 

4).9  
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Difluorinated epoxides (12) and carbonyl compounds in the presence of fluoride ion source afforded 

epoxy alcohols (13) in 48-85 % yields (Scheme 5). The resulting epoxides are valuable fluorinated 

building blocks.10 
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Regioselective oxirane ring opening by interaction with silylated nucleophiles in the presence of fluoride 

ion source was reported in some articles. Thus, oxiranes (14) and isothiocyanatotrimethylsilane (15), O-

trimethylsilyl thioacetate (16) or phenylthiotrimethylsilane (17) in the presence of catalytic amounts of 

Bu4N+F- afforded corresponding alcohols or their silyl ethers (18-20) in overall yields up to 99% (Scheme 

6).11 Cyclohexene oxide (21) and azidotrimethylsilane in the presence of Bu4N+F- at room temperature 

gave alcohol (22) in 93 % yield.12 
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Migration of aryl groups from silicon to carbon in α,β-epoxysilanes (23) in the presence of Bu4N+F- was 

explained by formation of hypervalent silicon intermediate (24). Pentacoordinate silicon derivative (24) 

rearranges with simultaneous epoxide ring opening to give β-hydroxysilane (25). The last step of 

rearrangement involves the fluorodiphenylsilanolate elimination and formation of alkenes (26) as main 

products (Scheme 7).13 
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1.2. Thiiranes 

 

The reaction of S-methyl-S’-trimethylsilylmethyl N-p-toluenesulfonylcarboimidodithiate (27) with p-

methoxybenzaldehyde was carried out in the presence of different sources of fluoride ion. Using CsF in 

MeCN at room temperature the desired 2-(3-methoxyphenyl)thiirane (28) was obtained in 75 % yield 

(Scheme 8).14 Similarly 2-arylthiiranes can be prepared. Formation of thiiranes proceeds via ring 

construction of intermediates 1,3-oxathiolanes. 
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1.3. Aziridines 

 

Novel stereoselective synthesis of E-aziridines (30) by addition of CF3SiMe3 to azirines (29) in the 

presence of R4N+F- (R = Et, n-Bu) / THF was described (Scheme 9).15  
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Ring-opening reactions of aziridines with different silylated compounds proceed regioselectively in the 

presence of Bu4N+F- to give corresponding products in excellent yields. Thus, N-tosylaziridines (31) in 

the system Me3SiX (X = N3, CN, Cl) / Bu4N+F- / THF at room temperature afforded N-tosylamines (32-

34) in 60-99 % yields (Scheme 10). Only in the case of azidotrimethylsilane as silicon nucleophile the 

formation of isomeric amines (35) was detected in yields up to 58%.16  
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trans-1,3-Diphenyl-2-trimethylsilylaziridine (36) reacts with Me4N+F- to give the desilylated product (37) 

rather than a ring opened product (Scheme 11). The interaction of aziridine (38) with fluoride ion in the 

presence of aldehydes affords addition products (41) in yields up to 56 %. Two mechanisms can be 

proposed for the desilylation and concomitant reaction with the aldehyde or proton. Firstly fluoride ion 

attacks the silicon to form trialkylsilyl fluoride and a free aziridinyl carbanion (39). Intermediate (39) then 

reacts with carbonyl compound to form aziridine (41). Alternatively, fluoride ion could attack the silicon 

to generate pentacoordinate silicon species (40) which subsequently attacks the carbonyl compound.17   
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Similar addition of aldehydes to 2-trimethylsilylaziridines can be carried out in the presence of 

tetrabutylammonium triphenyldifluorosilicate as fluoride ion source.18    

 

2. FOUR- MEMBERED RINGS 

 

Fluoride mediated synthesis of thietanols (43) from Z-α-silyl vinyl sulfides (41) was described. The 

formation of products (43) occurs via desilylated intermediates (42), which easily undergo cyclization to 

thietanol derivatives (Scheme 12).19 
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Fluoride-mediated decomposition of silicon containing dioxetanes by an intramolecular electron transfer 

mechanism was described in some articles. Thus, interaction of dioxetanes (44) with Bu4N+F- leads to 

formation of phenoxide ions (45). The first electron transfer from the phenoxide to the peroxide ring, 

which is supposed to be accompanied by the peroxide cleavage, occurs with similar rate constants in both 

cases. In the case of 44a, the carbonyl radical anion (46) (n = 0), generated after the peroxide cleavage, 

represents directly the excited state (47) (n = 0). In the case of 44b this stabilization is not possible, 

turning excited state formation by back electron transfer less efficient (Scheme 13).20  

 

 

 

 

 

 

Similar CIEEF (chemically initiated electron exchange fluorescence) emission was detected by fluoride 

ion mediated decomposition of 2a,7b-dimethyl-3-[2-(trimethylsilyl)ethoxycarbonyl]-2a,7b-dihydro-1,2-

dioxeto[3,4-b]indole (48). The proposed mechanism involves removal of N-silyl protecting through 

fluoride ion promoted E-2 type elimination to generate the free indolyl anion (49), which subsequently 

acts as intramolecular electron donor to dioxetane moiety. After single electron transfer (SET), breakage 

of O-C bond with formation of ketyl radical, and electron back-transfer, an electronically excited state is 

generated, which emits fluorescence (Scheme 14).21  
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3. FIVE-MEMBERED RINGS 

 

3.1. Furan, tetrahydrofuran, tetrahydrothiophenes, tetrahydroselenophenes 

 

 

A general fluoride mediated method of synthesis of substitituted benzofurans was developed. Thus, o-

triisopropylsiloxyarylacetylenes (50) were easily converted to benzofurans (51) or (52) by treatment with 

proton source or carbonyl compound in the Bu4N+F- / molecular sieves 4A  / THF /system.22 The above 

method was successfully used in the synthesis of benzofuran-type lignan vibsanol (54) from silyl ether 

(55) (Scheme 15).23,24   
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Synthesis of fluorinated derivatives of benzofurans from silyl enol ethers was reported. For example, 

acetophenone derivative (55) in the presence Bu4N+F- / MeCN afforded a mixture of benzofuran (56) (41 

%) and lactone (57) (22 %). Propiophenone derivative (58) in the similar conditions afforded mixture of 

3(2H)-benzofuranone (59) (28 %) and lactone (60) (43%) (Scheme 16).25 
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The proposed mechanism of formation of compounds (56, 57, 59 and 60) from silyl enol ethers (55 and 

58) is illustrated in Scheme 18. Upon treatment of compounds (55, 58) with Bu4N+F-, the O-Si bond of 

silyl enol ethers is cleaved with the formation of an enolate ion, which undergoes intramolecular Michael 

addition reaction to the α,β-unsaturated carbonyl group. The resulting intermediate (61) then opens the 

ring with the aryloxy anion as a leaving group, and the formation of intermediate (62), which can 

isomerize to 63 or enolize to 64. In intermediate (63), the aryloxy anion acts as a nucleophile to attack  

the double bond to give benzofuranone (65), which dehydrofluorinates further and gives 59. Starting  

with propiophenone derivative (58) (R’ = Me) benzofuranone (59) is final product.  With the 

acetophenone derivative (55) (R = H), 59 tautomerizes to 66. In benzofuran (66), the enol acts as a 

nucleophile and adds intramolecularly in a 1,6-conjugate manner followed by elimination of fluoride to 

give 56 as final product (Scheme 17). 
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Reaction of carbonyl ylides, generated from chloromethyl silylmethyl ethers, with alkenes provides a 

good route to di- or trisubstituted tetrahydrofurans. Thus, reaction of ethers (67) with alkenes in the 

presence of CsF / MeCN leads to tetrahydrofurans (68 and 69) in overall yield 55-93 % (Scheme 18). 

Allene (70) in the similar reaction afforded a mixture of two dihydrofurans (71) and (72) (ratio 68: 32) in 

overall yield 72 %. 26 
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A variety of α-trimethylsilylmethyl-substituted butyrolactones are easily obtained by tandem ene-reaction 

/ oxidative desilylation reaction. Reaction of silyl enol ether (73) with Bu4N+F- / THF and then with 

tetra(n-propyl)ammonium perruthenate (TPAP) and N-methylmorpholine N-oxide (NMO) afforded 

lactones (74) in 55-80 % yields with de up to 70% (Scheme 19).27,28 
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Asymmetric 1,3-dipolar cycloaddition of sulfur-containing 1,3-dipole and α,β-unsaturated 

camphorsultam amides as dipolarophiles was described. Thus, interaction of chloromethyl 

trimethylsilylmethyl sulfide (75) with CsF / MeCN furnishes thiocarbonyl ylide (76), which further reacts 



 

 

with chiral α,β-unsaturated amides to afforded tetrahydrothiophenes (77) and (78) (ratio up to 90 : 10) in 

90-95 % yields (Scheme 20).29 
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5-Siloxy substituted vinyl sulfoximines (79) in the presence of fluoride ion undergo deprotection followed 

by cyclization reaction to form tetrahydrofuran derivatives (80) as main products. Similarly, silyl ethers 

(81) in the system Bu4N+F- / THF / H2O were transformed to bicyclic tetrahydrofurans (82) (Scheme 

21).30,31  

 

Treatment of trimethylsilyl 4-iodo-2-benzylbutanoate (83) with Bu4NF.3H2O / THF at room temperature 
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afforded lactone (84) in 98 % yield (Scheme 22).32 

Selenothiolactone (87) was successfully obtained from selenothioic acid S-2-trimethylsilylethyl ester (85) 

by treatment with R4N+F- (R = Me, Bu) / THF and then with HCl / Et2O. The formation of product (87) 

occurs via intermediate ammonium selenothioates (86) (Scheme 23).33  

 

 

Phenyl[4-(trimethylsilyl)thien-3-yl]iodonium triflate (88) was found to be an excellent precursor of 3,4-

didehydrothiophene. Thus, treatment of thiophene (88) with KF / 18-crown-6 / CH2Cl2 system afforded 

intermediate (89), which can be trapped with various alkenes (for example, furan derivatives (90) or 

acrylonitrile (91)) to obtain addition products (92) or (93) in 13-31% yields (Scheme 24).34,35  
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Similarly, the interaction of benzynes (95), generated from corresponding iodonium triflates (94) in the 

presence of Bu4N+F- / CH2Cl2, with furans led to corresponding addition products (96) or (97) in 82-100  

% yields (Scheme 25).36-40  
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2-(tert-Butyldimethylsiloxy)-3-methylfuran (98) on treatment with dihydroisoquinolinium salts (99) in 

the presence of CsF in MeCN at room temperature afforded a mixture of addition products (100) with 

threo isomer predominating over erythro isomer (Scheme 26).41 
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Silylated tetrahydrofuran derivatives (101, 102) were successfully converted to corresponding alcohols 

(103, 104) in the presence of Bu4N+F- / H2O2 / KHCO3 system (Scheme 27).42 
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Synthesis of perbenzoylated 2’-C-β-trifluoromethyl-α-D-ribofuranose (106) from 1,3,5-tri-O-benzoyl-α-

D-2-ketoribofuranose (105) was carried out in three-step process. Thus, nucleophilic trifluoromethylation 

of tetrahydrofuran (105) with CF3SiMe3 / Bu4N+F- (5 mol%) / THF, followed by desilylation with 

stoichiometric amount of Bu4N+F- and treatment with benzoyl chloride / DMAP / Et3N afforded the 

desired product (106) in overall yield 73 % (Scheme 28).43 
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3.2. Pyrroles, pyrrolidines and indoles 

 

Addition of azomethine ylides (108), generated from N-silylmethyliminium triflates in the presence of 

fluoride ion source, to electron-deficient olefins  provide a good route to pyrrole or dihydropyrrole 

derivative. For example, interaction of silane (107) with CsF / MeCN or DME and then with olefin 

afforded a mixture of 2-alkoxy- (109) (27-68%) and 2-methylthiopyrrolines (110) (5-28%). The reaction 

of 107 with dimethyl acetylenedicarboxylate (DMAD) in the presence of CsF afforded the corresponding 

2-alkoxypyrroles (111) (49-61 %) together with 1,2-bis(methoxycarbonyl)-1-methylthioethylene (112) 

(32-46%) (Scheme 29).44 
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Similarly, cycloaddition of azomethyne ylides, generated from N-(trimethylsilylmethyl)thioureas (113) 

and CsF, to alkenes  (for example, (114))  led to 2-amino derivatives of  pyrrolines (115) (24-61%) or 3-

cyanopyrroles (116) (0-46%). The relative yields of products (115) and (116) depended upon reaction 

conditions: when 115 was heated with CsF in DME for 24 h pyrroles (116) were obtained as main 

products in yields up to 46 % (Scheme 30).45  
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Preparation of C-1 and/or C-2 functionalized indolizino[8,7-b]indole derivative by 1,3-dipolar 

cycloaddition reaction of β-carboline ylides was described. Thus, 2-N-(trimethylsilylmethyl)-β-carboline 

triflate (117) reacted with diethyl acetylenedicarboxylate (118a) or ethyl propiolate (118) in the presence 

of CsF to afford cycloaddition products (119) in 8-35% yields. Similarly, N-benzyl derivative (120) 

reacted with acetylene (118a) to give cycloaddition products (121) and (122) and novel azepine derivative 

(123) (Scheme 31).46  
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The possibilities of generation and trapping of a 1,2,3-triazolium 1-unsubstituted methanide (125) was 

investigated. Thus, interaction of 1,2,3-triazole (124) with trimethylsilylmethyl trifluoromethanesulfonate 

and then with CsF / CH2Cl2 led to methanide (125), which in the presence dialkyl acetylenedicarboxylate 

afforded pyrrolo[1,2-c][1,2,3]triazoles (126). The compounds (126) underwent thermal rearrangement 

giving 1-aminopyrroles (127) in 85-90% yields (Scheme 32).47 
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1,3,4-Thiadiazolium-3-methanides (129), generated from 2,5-diaryl-3-trimethysilylmethyl-1,3,4-

thiadiazolium triflate (128) and CsF, in the presence of alkyne dipolarophiles (dimethyl and 

diethylacetylenedicarboxylates, methyl propiolate) afforded 2,3-di- or 2,3,4-trisubstituted 1-[(1-vinylthio-

1-phenylmethylidene)amino]pyrroles (130) in 73-93 % yields (Scheme 33).48 

S

NN

ArAr

SiMe3

+ CF3SO3
-

CsF/ CH2Cl2

S

NN

ArAr

CH2
+ -

S

N

ArAr

N

H H
Y

CO2R

alkyne

alkyne

N Ar

Y CO2R

N
S

Ar
Y

CO2R

H

128 129

130

-

-

-

-

R = Me, Et; Ar = aryl; Y = H, CO2R 
Scheme 33  

 

Generation and reactions of N,N-dimethyl(1-methylpyrrolyl(or indolyl)methyl)ammonium N-methylides 

in the presence of fluoride were investigated in details by Y. Sato et al.49,50  For example, interaction of 

N,N-dimethyl-N-(trimethylsilylmethyl)(1-methyl-2-pyrrolylmethyl)ammonium triflate (131) with CsF in 



 

 

HMPA afforded a mixture of 3-dimethylaminomethyl-1,2-dimethylpyrrole (Sommelet-Houser 

rearragement product)  (132), 2-[2-(dimethylamino)ethyl]-1-methylpyrrole (Stevens rearrangement 

product) (133) and 1,2-dimethylpyrrole (134) in a ratio 45 : 25 : 30 in overall yield 38 %. Reaction of 

N,N-dimethyl-N-(trimethylsilylmethyl)(1-methyl-2-indolylmethyl)ammonium triflate with CsF led to 

similar mixture of three products. However, 3-substituted triflate (135) and CsF afforded 2-

(dimethylamino)methyl-1-methyl-3-methylene-2,3-dihydroindole (136)  as single product in 81 % yield 

(Scheme 34).49, 50  

 

 

N
Me

SiMe3

NMe2 N
Me

CH2

NMe2

-

-

-

-

N
Me

Me

NMe2

N
Me

NMe2 N
Me

Me

N
Me

SiMe3

NMe2

N
Me

CH2

NMe2

-

-

-

-
N
Me

NMe2

+

-OTf

CsF/ HMPA +

-

+ +

131                                                                        132                            133                       134

+
-OTf

CsF/ HMPA

+

-

135                                                                                                         136

Scheme 34
 

 

 

 

Pyrrole containing monoiodonium triflate (137) was found to be a source of 1-tert-butoxycarbonyl-3,4-

didehydro-1H-pyrrole (138). The intermediate (138) can be trapped with furan, acrylonitrile and benzene 

affording cycloadducts (139-141) in low yields (Scheme 35).51 



 

 

 

Cycloaddition reaction of indolo-4,5-quinodimethanes (143), generated from N-Boc protected indoles 

(142) by CsF / MeCN at room temperature, and dienophiles (for example, acrylonitrile and dimethyl 

acetylenedicarboxylate) afforded 4,5-fused indoles (144) and (145) in 68-95 % yields (Scheme 36).52 
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Synthesis of 1-azaspiro[4.4]nonane system by stannyl anion mediated cyclization of pyrrolidine 

derivatives 146 in the system Me3SiSnBu3 / CsF / DMF system was described. Depending on reaction 

conditions two spirocompounds were isolated. Using 1.2 equiv. of Me3SiSnBu3 the desired products 

(147) and (148) were obtained in 51% and 3% yields, correspondingly. In the presence of 4 equiv. of 

silane spiro compound (148) was obtained as a single product in 63% yield (Scheme 37).53, 54   

 

 

Finally, cleavage of O-silyl ether in an N-Boc-protected pyrroglutaminol (149) using Bu4N+F- / THF at 

room temperature led to lactam derivative (150). Product (150) of the Boc group migration  was isolated 

in yields up to 100% along with hydroxy derivative (151) (Scheme 38).55   
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3.3. Dioxolanes and oxathiolanes 

 

Reaction of carbonyl ylide, generated from chloromethyl silylmethyl ethers (152), with ketones or 

thioketones provides a good route to dioxolanes or oxathiolanes. The reaction products (153-155) were 

isolated in 57-82 % yields (Scheme 39).26 
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S-Trimethylsilylmethyl carbonimidoditioate derivates (156) can be used as a synthetic equivalent of 

thiocarbonyl ylide (-CH2S+=C=NR). Thus, reaction of silane (156) with carbonyl compounds in the 

presence of CsF and DMF at room temperature afforded oxathiolanes (157) in yields up to 68 % (Scheme 

40).56 
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3.4. Oxazoles, oxazolines and isoxazoles 

 
General method of synthesis of oxazoline derivatives by addition of alkylthionitrile ylides and related 

compounds to carbonyl compounds was described in some articles. Thus, interaction of diethyl N-

trimethylsilylmethyl isothiocyanate (158) with carbonyl compounds in the presence of CsF / DMF led to 

mixture of products (159) and (160). The aldol-type adducts (159) were readily converted to oxazolines 

(160) by treatment with silica gel.57 Similarly, N-trimethylsilylmethylisothiourea (161) underwent 

cycloaddition with carbonyl compounds in the presence of fluoride ion source to afford 2-

aminooxazolines (162) in yields up to 84 % (Scheme 41).58 
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Reaction of 1,2-dihydropyridine (163) with carbonyl compounds in the presence of CsF in MeCN or 

Bu4N+F- in THF afforded  aminooxazoline derivatives (164) in 38-77 % yields (Scheme 42).59,60 

 

Treatment of cumarone  (165) and indole (166) with aldehydes and ketones gave 1,3-dipolar  

cycloadducts, 2-oxazolidinylidines (167) and (168) in 11-69% yields (Scheme 43).61  
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Dithiolane methylide, generated from iminodithiolane salt (169) and CsF, underwent efficient 

cycloaddition to carbonyl compounds to afford after hydrolysis 1,3-oxazolidine-2-thiones (170)  in 28-63 

% yields (Scheme 44).62 

 

 

Fluoride-induced aldol-type reaction of 2-silyl derivatives (171) of oxazoles with aldehydes was 

described. Products (172) of reaction oxazolines were isolated in 77-80% overall yield with excellent cis-

selectivity. The proposed mechanism of reaction included formation of C-Si bond cleavage products, 

which were in equilibrium with ring-opened enolate anion. Addition of the enolate anion to aldehydes 

was followed by cyclization forming the oxazoline (172) ring (Scheme 45).63  

 

Reaction of 2,3-dihydro-6-methyl-7H-oxazolo[3,2-a]pyrimidin-7-one (173) in the presence of Me3SiN3, 

Bu4NF/ THF gave a good yield of oxazole ring opening product (174) (Scheme 46).64 
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Isoxazole derivatives also undergo some transformations mediated by fluoride ion activation of silicon 

bonds. Thus, optically active 3,4,5-trisubstituted 4,5-dihydroisoxazoles (175) were easily converted into 

chiral 4-substituted 5,6-dihydro-4H-[1,2]oxazines (179) in 73-100% yields. The mechanism of reaction 

included fluoride ion generation of desilylated intermediate (176), from which an oximate anion was 

generated to give enol intermediate (177). Through the keto-enol tautomerism, intermediate (177) 

isomerized to aldehyde (178), which was then intramolecularly attacked by the oximate anion to give 

oxazine (179) (Scheme 47).65 

 

Bicyclic isoxazole derivatives (180), easily prepared from nitroolefin and secondary allylic amine in the 

presence of Me3SiCl, Et3N, underwent ring opening in the presence of Bu4N+F- to provide oximes (181) 

in 60-66% yields (Scheme 48).66 
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3.5. Oxasilacyclopentanes 

 

Oxasilacyclopentanes (183-186), which can be readily obtained by insertion of carbonyl compounds into 

silacyclopropanes (182), undergo ring opening in the presence of Bu4N+F-, t-BuOOH, CsOH.H2O 67, CsF, 

t-BuOOH, CsOH. H2O, KH, DMF 68 or KF, 30% H2O2,  KHCO3,  MeOH,  THF 69, 70 systems to afford 

1,3-diols. For example, interaction of oxasilacyclopentane (186) with Bu4N+F-, t-BuOOH, CsOH.H2O in 

DMF led stereospecifically to diol (187) in 64 % yield (Scheme 49). 

 

 

In the absence of the oxidant oxasilacyclopentanes in the presence of fluoride ion source gave the 

corresponding alcohols. Thus, protodesilylation of allene (188) in the presence of Bu4NF / 1-methyl-2-

pyrrolidinone (NMP ) at room temperature led to alcohol (189) (Scheme 50).71   
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Diastereoselective vinyl addition to chiral hydrazones via tandem thiyl radical addition and silicon 

tethered cyclization to oxasilacyclopentane (190) was described. The interaction of heterocycles (190) 

with KF led to alcohols (191) in 45-89 % yields with anti: syn ratio up to 98:2 (Scheme 51).72 

 

3.6. Thiazoles and thiazolines 
 
The cyclocondensation reactions were succesfully used in the preparation of thiazole derivatives. For 

example, interaction of trimethylsilyl mercaptoalkanoate (192) with hydrazine (193) in the presence of  

Bu4N+F- in CH2Cl2 leads to 2,2-dimethyl-3-anilinothiazolidin-4-one (194) in 21% yield (Scheme 52).73  

 

Cycloaddition reaction of phthalizinium-2-methanide (196), prepared from triflate (195) and CsF, with 

C=S dipolarophiles (thiobenzophenone, phenyl dithioacetate and methyl cyanodithioformate) led to 

thiazolo[4,3-a]phthalazines (197) in yields up to 51% (Scheme 53).74,75  
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3.7. Dithiolanes and dithiolones 

 

Preparation of 1,3-dithiol-2-thiones (199) from Z-1,2-bis-triisopropylsilylthioalkenes (198) and 

thiophosgene or phenyl chlorothionoformate in the presence of Bu4N+F- / toluene at 0oC was described. 

The reaction products (199) were isolated in 35-89% yields (Scheme 54).76 

 

It has been found that 2-trimethylsilyl-1,3-dithiolane (200) can serve as a source of dithiolane anion.  

Thus, interaction of dithiolane (200) with benzaldehyde or allyl bromide in the presence of fluoride ion 

led to corresponding 2-substituted 1,3-dithiolanes (201) or (202) (Scheme 55).77 
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3.8 Pyrazoles and imidazoles 

 
1,2,3-Thiadiazol-3-ium-3-methanide 1,3-dipoles (204), generated from trimethylsilylmethyl 

trifluoromethanesulfonate salts of 1,2,3-thiadiazoles (203) and CsF / CH2Cl2, underwent interaction with 

alkynes to afford 1-(2-vinylthioethenyl)pyrazoles (205) in 58-90 % yields (Scheme 56).78   
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Similar reactions of 1,2,3-triazolium ylides in the synthesis of various azoles were reviewed by R. N 

Butler and D. F. O’Shea in 1994.79   

N-Unsubstituted nonstabilized azomethine ylides, generated from N-(trimethylsilylmethyl)iminium 

triflates (113) and CsF in DME, underwent cycloaddition to strongly polarized sulfonylimines giving 

imidazolines (206) and/or (207) in yields up to 70%. The initial cycloadducts (206) were quantitatively 

transformed to imidazolines (207) in refluxing toluene (Scheme 57).80 
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Finally, imidazolidine triones (208) were easily trifluoromethylated by CF3SiMe3 in the presence of  

Bu4N+F- in THF to afford alcohols (209) in 25-58% yields (Scheme 58).81 
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3.9. Oxadiazoles and triazoles 

 

Desilylation of N-trimethylsilylmethyl-1,2,5-oxadiazolium (furazan) salts (210) in the presence of CsF led 

to 6H-1,2,5-oxadiazines (211)  in 80-93% yields. The formation of products (211) proceeds via 

intermediates - furazan-N-methanides (Scheme 59).82 
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Reaction of N-(trimethylsilylmethyl)iminium triflates (113) with diethyl azodicarboxylate in the presence 

of CsF in DME led to cycloaddition products (212) and/or (213) in yields up to 74%. The 1,2,3-

triazolidines (212) were quantitatively transformed to triazolines (213) in refluxing toluene (Scheme 

60).80 
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4. SIX-MEMBERED RINGS 

 

4.1. Pyrones and thiopyrones 

 

Synthesis of pyrone (215) by treatment of silyl ether (214) with TAS-F [tris(dimethylamino)sulfonium 

difluorotrimethylsilicate] as fluoride ion source was successfully carried out. The product 215 of reaction  

was isolated in 75 % yield (Scheme 61). Using Bu4N+F- as fluoride ion source the disilylated product  was 

obtained.83  

 

Synthesis of gem-difluoro-C-glucosides and C-disaccharides in the presence of Bu4N+Ph3SnF2
- (TBAT) 

as fluoride ion souce was described. Thus, difluoroenoxysilanes, prepared from acylsilanes (216) and 

CF3SiMe3 under fluoride ion action were glucosylated by glucal (217) to yield C-difluoroglucosides (218) 

(α / β ratio up to 80 :20) in 60-63 % yields (Scheme 62).84  

 

 

Reaction of benzyne (220), generated from phenyl(2-trimethylsilylphenyl)iodonium trifluoromethane-

sulfonate (219) in the presence of Bu4N+F- in CH2Cl2, with thiobenzophenones led to formation of 

cycloadducts (221) and (222) (Scheme 63).85, 86 
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Finally, trans-1-phenyl-2-benzothiopyranium 2-methylides (224), generated by fluoride ion-induced 

desilylation of triflates (223) in DMSO, rearranged to 3-substituted 7,8-dihydro-5H,13H-

dibenzo[c,f]thionines (225) (9-97% yields) (Sommelet-Houser rearrangement products), 1-(4-substituted 

phenyl)-1,2,3,4-tetrahydro-3-benzothiepines (226) (2-27%) (Stevens rearrangement products) and (4-

substituted phenyl)(2-vinylphenyl)methyl methyl sulfides (227) (0-15%) (Hofmann degradation  

products). Above reaction in the presence of oxygen led to ketones (228) as main products in 57-86% 

yields (Scheme 64). 87     
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4.2. Pyridines and quinolines 

 

The 2,3-pyridyne, which can be easily obtained from 4-methoxy-2-trifluoromethanesulfonyloxy-3-

trimethylsilylpyridine (229) in the presence of fluoride ion source,  was trapped with furan, 2-methylfuran 

and 2-methoxyfuran to afford addition products (230) and (231) in good yields. (Scheme 65).  

 

 

A convenient method of preparation of 2-pentafluoroethyl-3-trifluoromethyl-4H-quinolizin-4-ones (234) 

by reaction of 2-trimethylsilylmethylpyridines (232) with perfluoro(2-methyl-2-pentene) (233) in the 

presence of KF was developed. Reaction products were isolated in 53-98% yields (Scheme 66).89 

 

 

 

2-, 3- And 4-trimethylsilylmethylpyridines (235) and similar quinolines (236) can be transformed to 

corresponding acetates (237) and (239) or alcohols (238) and (240) by treatment with PhI(OAc)2 (PIDA) / 

Bu4N+F- in CH2Cl2 (Scheme 67).90 
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Chemoselective methylation of heterocycles (for example, 2-pyridone or 2-quinolone) in the presence 

CsF / ClCH2SiMe2Cl / MeCN system was described. N-Methylated heterocycles (241) and (242) were 

isolated in 75 and 77% yields, correspondingly (Scheme 68).91 

 

Derivatives of benzo[h]quinolines (244) can be easily obtained by Corriu method from tetralones (243) in 

the presence of methacrylamide / Si(OMe)4 / CsF system at 80oC (Scheme 69).92 
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N-Methylquinolinium and isoquinolinium iodides reacted with silicon nucleophiles in the presence of 

fluoride ion source to provide a good route to substituted dihydroquinolines and dihydroisoquinolines. 

Thus, interaction of quinoline salts (245) with trimethylsilylacetonitrile or ethyl trimethylsilylacetate in 

the presence CsF in MeCN led to a mixture of 2- and 4-substituted quinolines (246, 247). Similar reaction 

of isoquinolines (248) proceeded regioselectively and afforded 1-substituted 1,2-dihydroisoquinolines 

(249) in yields up to 77 % (Scheme 70).92,93 

 

 

 

Rearrangement of cis- and trans-2-methyl-3-(substituted phenyl)-1,2,3,4-tetrahydroisoquinolinium 2-

methylides (251), generated from iodides (250) in the presence of CsF, led to a mixture of E- and Z-6-

methyl-4a,5,6,7-tetrahydro-12H-dibenzo[c,g]azonines (252) (0-77%) ([2,3] sigmatropic rearrangement 

products), 4-(4-substituted phenyl)-2-methyl-2,3,4,5-tetrahydro-1H-2-benzazepines (253) (0-10%) 

(Stevens rearrangement products) and Hofmann degradation products E- and Z-254 (0-100%) (Scheme 

71).95 
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4.3. Morpholines and piperazines 

 

1-(2,2,2-Trifluoro-1-trimethylsiloxyethyl)morpholine and related compounds can serve as new reagents 

for trifluoromethylation of non-enolizable carbonyl compounds. For example, silyl ether (255) and 

benzophenone in the presence of CsF in glyme afforded addition product (256) in 80 % yield (Scheme 

72).96, 97  

                   

Reaction of silyl ethers of morpholines and piperazines (257) with disulfides or diselenides in the 

presence of TBAT as a fluoride ion source led to trifluoromethylsulfides or selenides (258) in yields up to 

95% (Scheme 73).98 
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4.4. Thiadiazones 

  

Reaction of substituted trimethylsilyl mercaptoalkanoate (259) with hydrazines (260) in the presence of  

Bu4N+F- in CH2Cl2 gave perhydro-1,2,4-thiadiazin-5-ones  (261) in 23- 67 % yield (Scheme 74).73  

 

5.  LARGE-MEMBERED RING SYSTEMS 

[4+2] Cycloaddition of cyclohexa-1,2,3-triene (263), generated from triflate (262) and CsF, with N,α-

diphenylnitrones afforded seven-membered  cyclic amines (266) in 6-54 % yields. The formation of  

heterocycles proceeded via  (264), which generated ionic intermediates (265)  by cleavage of N-O bond. 

The last step was the formation of C-C bond in 265, followed by an appropriate hydrogen shift to afford 

the cycloadduct (266) (Scheme 75).99 
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Oxidative cleavage of carbon-silicon bonds in 1,2-oxasilepin in the presence of oxidant and fluoride ion 

source provides a good route to diols.100 For example, oxasilepin (268), prepared from silyl ethers (267) 

and CpTi[P(OEt)3]2 catalyst, underwent ring opening in the presence of KF / H2O2 / KHCO3 system to 

afford olefinic diols (269) in 50-68 % yields with high Z stereoselectivity (Scheme 76).101 

  

Synthesis of large-membered heterocycles by rearrangements of ammonium ylides was shorthly reviewed 

by Y. Sato and N. Shirai in 1994.50 Some of more recent examples were described in Chapters 4.1 and 4.2. 

Synthesis of functionalized cyclophanes by ring-opening / ring-closure cascade reactions of 

siloxycyclopropanes was described. Thus, cyclopropane (270) in the presence of system CsF / 

BnEt3N+Cl- / DMF at 90oC afforded a mixture of 5-oxo-2,2,7-trimethoxycarbonyl-[8](2,6)pyridinophane 

(271) (36%) and 5,19-oxo-2,2,7,16,16,21-hexa(methoxycarbonyl)-[82](2,6)pyridinophane (272) (19%) as 

mixture of two diastereomers (Scheme 77).102 

 

 

Recently synthesis of azamacrocycles from methyl 2-siloxy-2-vinylcyclopropanecarboxylates was also 

described. For example, silyl ether (273) in the presence of CsF / BnEt3N+Cl- / DMF system afforded 

azacycle (274) in 31 % yield (Scheme 78).103  
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Finally, macrocyclization of silyl ether (275) in the presence of Bu4N+F- in THF afforded coronane (276) 

in 90% yield (Scheme 79).104 
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