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Abstract – The structures, names, biological activities, and references of two 

hundred ninety-nine marine original briarane-type metabolites are described and 

compiled in tabular form in this review. All briarane-type natural products are 

obtained from marine invertebrates, including various octocorals, a nudibranch, and 

a sponge. Some of these compounds showed potential biological activities.  

  
 

1. INTRODUCTION 

Since the discovery of the first briarane-type metabolite (briarein A) in 1977 by Burks et al. from a West 

Indian gorgonian coral Briareum asbestinum,1 two hundred ninety-nine 3,8-cyclized cembranoid 

compounds have been reported. They all feature the briarane carbon skeleton (Scheme 1), containing a 

bicyclo[8.4.0] system, and most possess a γ-lactone in their structures. Two hundred ninety-seven 

compounds of this type have been isolated from the soft coral subclass Octocorallia (Phylum cnidaria, 

class Anthozoa), including Gorgonacea, Pennatulacea, Alcyonacea, and Stolonifera. In addition, two 

briaranes were obtained from a nudibranch and a sponge, respectively. Briarane-type diterpenoids 

continue to attract the attentions of investigations because of the structural complexity and interesting 

biological activities (e.g., cytotoxicity, antiinflammatory, antiviral, immunomodulatory activity, insect 

control, antifouling, biotoxin, and ichthyotoxicity) associated with numerous compounds of this type. 

This survey of briarane-type compounds will be presented taxonomically according to genus and species. 



 

 

 
 

[O]

O

4 isoprene units 1

3
8 C-3,C-8

cyclization

3
1

2 4
5
6

789
101112

13
14

15
16

17

18
19

20

briaranes

O

cembranes  
 

Scheme 1. Possible biogenetic origin of briarane-type metabolites. The numbering system shown is those presently in use. 

 
2. GORGONACEA 

2.1. Briareum (= Solenopodium)2 (family Briareidae) 

A. Briareum asbestinum 

The octocoral genus Briareum has been the subject of a number of investigations which have uncovered 

various oxygenated terpenoids, the majority of which possess the briarane skeleton.3,4 The structure, 

including the absolute stereochemistry of the first briarane-type compound, briarein A (1), was determined 

by X-Ray analyses.1 Briarein B (2) had been reported in 1980’s,5,6 however, the complete spectral data (UV, 

IR, MS, 1H and 13C NMR) and structure elucidation of briareins A (1) and B (2) with those of the other ten 

new metabolites, briareins C–L (3–12), were reported by Rodríguez et al. in 1996.7 Brianthein V (13) is a 

cytotoxic and antiviral briarane from B. asbestinum, collected near Sandy Cay, Bahamas. The structure and 

absolute configuration of briarane (13) were established by spectroscopic methods (IR, MS, 1H and 13C 

NMR) and X-Ray analyses.8  

Moreover, eleven novel 2-n-butyryloxybriaranes, briareolate esters A–I (14–22) and briareolides J (23), and 

K (24) and two unnamed new diterpenoids (25) and (26) that belong to the briarane class compounds, were 

isolated from the organic extracts of B. asbestinum, collected off the coast of Tobago. The structures of 

14–26 were elucidated by spectroscopic methods, including 1D and 2D NMR spectral analyses.9–11 The 

structures and relative configurations of briareolate esters A (14) and D (17) were further confirmed by 

X-Ray analyses.9,11 It is noted that briareolate esters A–I (14–22) containing C-19 methyl ester groups in 

their structures;9–11 briareolate esters A–C (14–16) and H (21) possessing cyclic ether groups in the 

ten-membered rings;9–11 the 9-keto group in briareolate esters D–G (17–20), and I (22), and briareolide K 

(24);11 the spiroketal-lactone-dihydrofuran system in briarane (25);10 and the epoxy groups attaching at the 

C-7/C-8 positions in briareolate esters D–F (17–19) and I (22),11 respectively, are rarely found in briarane 

class metabolites. However, the geometry across the C-7/C-8 double bond in briareolate ester G (20) and the 

stereochemistry of C-7 hydroxyl group in briarane (26) are still unknown.10,11 Briareolate esters D (17), G 

(20), and I (22), and briareolide K (24) showed activity in the brine shrimp bioassay.11 
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B. Briareum excavatum 

Seven new briaranes, including 16-hydroxystecholide C acetate (27) and stecholides I–N (28–33), were 

isolated from the Papua New Guinea gorgonian coral, B. excavatum. The structures of these metabolites 

were established by the interpretations of spectral analyses (and conformational energy calculations. The 

structure, including the relative configuration of stecholide I (28) was further confirmed by X-Ray 

diffraction analyses.12 Besides, a series of briarane-type metabolites have been isolated from B. excavatum, 

that were collected along the coast of Southern Taiwan, Great Barrier Reef, and the Sulawesi Island, 

Indonesia. These metabolites are excavatolides A–Z (34–59),13–16 briaexcavatolides A–R (60–77),17–19 and 

briantheins A–C (78–80),20 respectively. The structures of compounds (34–80) were elucidated by 

extensive spectroscopic methods. Structures of excavatolides B (35) and U (54); and briaexcavatolides B 

(61), K (70), O (74), and P (75) were further confirmed by X-Ray diffraction analyses, respectively.13,16–19 

The absolute configuration of brianthein A (78) was established by the modified Mosher’s method and 

supported by restrained molecular dynamic calculations.20  

Among the above compounds, excavatolide F (39) is the first briarane derivative containing a 

3(E),5(Z)-diene moiety in a S-trans conformation.14 Briaexcavatolides K (70) and L (71) are the only 

briarane diterpenoids known to possess hydroxyl groups at the C-8β and C-17α positions.18 Brianthein B 

(79) is the only hydroperoxybriarane that had been isolated.20  

All briaranes from B. excavatum were studied for their potential cytotoxicity toward P-388 and various 

human tumor cell lines. The cytotoxic data of these compounds that were reported previously are presented 

in Table 2. It is noted that brianthein A (78) exhibited reversing multidrug resistance in KB cells.20 In a later 

study, stecholide L (31) was isolated from an Indonesian gorgonian coral, Briareum sp. too.21 

 

Table 2. The Briarane-Type Metabolites from B. excavatum 
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aFor significant activity of pure compounds, an ED50 value < 4.0 µg/mL is required. See ref. 22. 
bThese cytotoxic data were reported by Rodríguez et al. See ref. 21. 
 

C. Briareum polyanthes 

B. polyanthes, a new gorgonian species, was discovered at the eastern end of the Bermuda archipelago. This 

gorgonian coral was found to contain five new metabolites, including briantheins W–Z (81–84)23–25 and an 

unnamed briarane (85).26 The structures (81–84) were determined by spectral analyses (IR, UV, MS, 1H and 
13C NMR), but the related spectral and physical data for metabolite (85) were not reported.26 In addition, the 
13C NMR spectral data of brianthein X (82) was reassigned by Linz et al. in 1986 with 2D NMR 

techniques.27 Besides, the structure of brianthein W (81) was further confirmed by single-crystal X-Ray 

diffraction analyses.23 The absolute configuration of brianthein X (82) was established by chemical 

methods and X-Ray diffraction analyses.28,29 In the insecticidal activity testing, brianthein Y (83) exhibited 

toxicity at a high dose but inactive at a low dose to the grasshoppers, Melanoplus sanguinipes and M. 

bivitattus.26 Brianthein W (81) was also obtained from a Taiwanese gorgonian, Briareum sp.30 and 

briantheins X–Z (82–84) were isolated from the B. asbestinum, that collected in Caribbean water.8,29 

Briaranes (81) and (84) exhibited cytotoxicity in the P-388 assay, and briaranes (83) and (84) displayed 

antiviral activity, respectively.8,30   
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aThe cytotoxic data of brianthein W (81) were reported by Sheu et al. See ref. 30. 
bThe antiviral and cytotoxic data of briantheins Y (83) and Z (84) were reported by Coval et al. See ref. 8. 
 

D. Briareum stechei 

In the Great Barrier Reef water, B. stechei grows in shallow water reef habits as encrusting sheets exposed 

on living and dead hard coral skeletons, and in the vicinity of the growing edge of this organism, the 

hexacoral, Porites andrewsi (a hard coral) was dying. This interesting ecological phenomenon indicated the 

possibility of allelopathy in B. stechei. Based on above ecological character, the chemical constituents of B. 

stechei were studied and led to the isolation of four new briarane-type derivatives (86–89). The structures 

and relative stereochemistry of 86–89 were elucidated by NMR studies, and the single-crystal X-Ray 

determinations were performed on briaranes (88) and (89). However, the possible ecological roles of these 

metabolites are uncertain.31 Twenty novel metabolites, designated stecholides (90–109), featuring the 

briarane carbon skeleton were isolated from the gorgonian coral, B. stechei, that was collected from the 

Dalton Reef area of the Australian Great Barrier Reef. The structures of metabolites (90–109) were 

deduced by extensive spectral analyses (IR, MS, 1H and 13C NMR). Briaranes (90, 92, and 109) showed 

cytotoxicity to P-388 tumor cells.32 Moreover, eleven new briarane-type diterpene lactones, which were 

named miolides (110–120), were isolated from this organism that collected at the Mil channel, Yap, 

Federated States of Micronesia.33 Briarane (120) is the first of the naturally occurring briarane lactones to 



 

 

have a contracted ring-A with a bicyclo[8.3.0] system. Excavatolide A (34) was also obtained from this 

organism. 

 
Table 4. The Briarane-Type Metabolites from B. stechei 

Structure No. Name Biological activity Ref.
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Structure No. Name Biological activity Ref.
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Structure No. Name Biological activity Ref.
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milolide F 33

a(1R*,2S*,3R*,5Z,7S*,8(17)Z,10R*,11R*,12S*,14S*)-3,14-diacetoxy-11,12-epoxy-18-oxobriara-5,8(17)-dien-2-yl butanoate 
b(1R*,2R*,5Z,7S*,8(17)Z,10R*,11R*,12S*,14S*)-14-acetoxy-11,12-epoxy-18-oxobriara-5,8(17)-dien-2-yl butanoate 
c(1R*,2R*,4R*,5Z,7S*,8(17)Z,10R*,11R*,12S*,14S*)-4,14-diacetoxy-11,12-epoxy-18-oxobriara-5,8(17)-dien-2-yl butanoate 
d(1R*,2R*,4R*,5Z,7S*,8(17)Z,10R*,11R*,12S*,14S*)-4,14-diacetoxy-11,12-epoxy-18-oxobriara-5,8(17)-dien-2-yl propanoate 
 

E. Briareum spp. 

Based on the classic taxonomic analyses, gorgonian coral of the genus Briareum is recognized as a 

transitional species between the Alcyonacea and Gorgonacea, the two major orders of Octocorallia.34 In 

some cases of the previous studies, the Briareum gorgonian corals were even identified as a soft coral of the 

order Stolonifera, Pachyclavularia violacea, on the basis of their similarity in colonial morphology.30,35,36 

Besides, the Briareum stechei was collected as a Parerythropodium species (order Alcyonacea, family 

Alcyoniidae).31 However, the specimen identification were subsequently revised on the basis of their 

chemical constituents. 

Six new diterpenoids, solenolides A–F (121–126), were isolated from a gorgonian, Briareum sp. collected 

in the Western Caroline Islands of Palau. The structures of briaranes (121–126) were assigned by 

spectroscopic (IR, UV, MS, 1H and 13C NMR) and chemical methods.37 However, the stereochemistry of 

solenolides C (123) and D (124) is revised by detailed spectral analyses (1H NMR) and by the 

interpretations of MM2 molecular mechanics calculations, respectively.33,38 Under the revisions, solenolide 

D (124) and briaexcavatolide E (64) were proved to be the same metabolite. Due to the potential biological 

activities, some research groups start to synthesize the solenolide derivatives.39,40  

Eleven new metabolites (127–137) possessing the briarane carbon skeleton, were isolated from the 

dichloromethane extracts of the Australian gorgonians, Briareum spp. The structures of metabolites 



 

 

(127–137) were elucidated by NMR (1D and 2D) and chemical methods.34,35  Metabolite (136) is the first 

briarane possessing a 17-hydroxyl group. Briarane (133) was also obtained from the Taiwanese gorgonian 

coral, B. excavatum.18  

Brianolide (138), a new antiinflammatory diterpenoid of the briarane class, was isolated from an Okinawa 

gorgonian, Briareum sp. The structure, including the absolute stereochemistry of 138 was determined on 

the basis of single-crystal X-Ray analyses of the monoacetate (138) prepared by acetylation of 138 with 

Ac2O/pyridine.41 A gorgonian coral, Briareum sp. (identified as either B. asbestinum or B. polyanthes), 

from Puerto Rico contained nine new briarane derivatives (139–147), which have been named briareolides 

A–I, respectively. The structures of briaranes (139–147) were determined by spectroscopic methods (IR, 

UV, MS, 1H and 13C NMR), including 2D NMR spectral analyses. The structure and absolute 

stereochemistry of briareolide B (140) were further confirmed by X-Ray crystallographic analyses. 

Briareolides A–E (139–143) have displayed antiinflammatory activity.42 Collections of the gorgonian 

Briareum sp. from the coast of Taiwan yielded three new briaranes, 2β-acetoxy-2-debutyryloxystecholide E 

(148), 9-deacetylstylatulide lactone (149), and 4β-acetoxy-9-deacetylstylatulide lactone (150). The 

structures and relative stereochemistry of these metabolites were determined by the combination of 

spectroscopic (IR, MS, 1H and 13C NMR) and chemical methods.30 In addition, the 13C NMR spectral data 

of brianthein W (81) was revised in this study. In 1998, an Indonesian gorgonian, Briareum sp., has afforded 

two new stecholide metabolites, 2,9-diacetyl-2-debutyrylstecholide H (151) and 13-dehydroxystecholide J 

(152), along with the semisynthetic product, 2β-acetoxy-2- debutyryloxystecholide E acetate (153), which 

was isolated as a natural product for the first time.21,43 The structures of metabolites (151–153) were 

deduced by extensive NMR studies, and by comparison the spectral and physical data with those of the 

other known briarane-type metabolites, and the relative configuration of briarane (152) was further 

confirmed by MMX energy minimization calculations.21  

The organic extracts of a gorgonian, Briareum sp., collected in the area of Bonotsu, Kagoshima Prefecture, 

Japan, which show ichthyotoxicity against Japanese killifish, Orzia latipes. Bioassay guided fractionation 

of the extracts, sixteen novel polyoxygenated briaranes, violides A–P (154–169), were obtained from this 

organism.36,44–46 The structures of compounds (154–169) were elucidated by the interpretations of spectral 

analyses (IR, MS, 1H and 13C NMR) and chemical methods. The structures and relative configurations of 

violides A (154) and J (163) were further confirmed by X-Ray diffraction analyses.36,45 The violides A–F 

(154–159), J–L (163–165), and O (168) were found to contain independent oxygenated functional groups at 

C-2, C-3, and C-4 positions.36,44–46 Compounds of this type are rarely found in related studies.15,19 

Furthermore, violides K (164) and L (165), the only briarane-type metabolites were found to exist 

pentahydroxyl groups in structures.45 Violides B (155), E (158), G (160), and H (161) were also isolated 

from a Japanese gorgonian, Briareum sp., collected in the sea near Satsuma Peninsula, Japan.47 



 

 

Table 5. The Briarane-Type Metabolites from Briareum spp. 
Structure No. Name Biological activity Ref. 
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Structure No. Name Biological activity Ref.
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CC 50 (Vero, MDCK) = 1.69, 1.67 µg/mL 
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CC50 (Vero, MDCK) = >100, >100 µg/mL 
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aThe structures of solenolides C (123) and D (124) have been revised. See ref. 33 and 38. 
b(1R*,2R*,3R*,5Z,7S*,8S*,9S*,10S*,11R*,12S*,14S*,17R*)-2,3,14-triacetoxy-8,17:11,12-bisepoxy-9-hydroxybriara-5-en-18- 
one 
c(1R*,2R*,3R*,5Z,7S*,8S*,9S*,10S*,11R*,12S*,14S*,17R*)-3,14-diacetoxy-2-butyryloxy-8,17:11,12-bisepoxy-9-hydroxy- 



 

 

briara-5-en-18-one 
d(1R*,2R*,3R*,5Z,7S*,8(17)Z,10R*,11R*,12S*,14S*)-2,3,14-triacetoxy-11,12-epoxybriara-5,8(17)-dien-18-one 
e(1S*,2S*,4R*,5Z,7S*,8S*,9S*,10S*,11R*,12R*,13Z,17R*)-2,4,9,12-tetraacetoxy-8,17-epoxy-11-hydroxybriara-5,13-dien- 
18-one 
f(1S*,2S*,4R*,5Z,7S*,8S*,9S*,10S*,11S*,12R*,13Z,17R*)-2,4,9-triacetoxy-8,17-epoxy-11,12-dihydroxybriara-5,13-dien- 
18-one 
g(1S*,2S*,4R*,5Z,7S*,8S*,9S*,10S*,11S*,12R*,13Z,17R*)-2,4,9,12-tetraacetoxy-8,17-epoxy-11-hydroxybriara-5,13-dien- 
18-one 
h(1S*,2S*,5Z,7S*,8S*,9S*,10S*,11R*,12R*,13Z,17R*)-2,12-diacetoxy-8,17-epoxy-9-hydroxybriara-5,13-dien-18-one 
iThese cytotoxic data were reported by Sung et al. See ref. 18. 
j(1R*,2R*,3S*,5Z,7S*,8S*,9S*,10S*,11Z,14S*,17R*)-2,14-diacetoxy-3-butyryloxy-8,17-epoxy-9-hydroxybriara-5,11-dien- 
18-one 
k(1R*,2R*,3S*,5Z,7S*,8S*,9S*,10S*,11Z,14S*,17R*)-2,3,14-triacetoxy-8,17-epoxy-9-hydroxybriara-5,11-dien-18-one 
l(1R*,2S*,4S*,6S*,7R*,8R*,9S*,10S*,11Z,14S*,17S*)-14-acetoxy-6-chloro-4,8-epoxy-9,17-dihydroxy-2-propionyloxybriara- 
5(16),11-dien-18-one 
m(1R*,2R*,3S*,6S*,7R*,8R*,9S*,10S*,11R*,13Z)-3,9-diacetoxy-6-chloro-8-hydroxy-2-propionyloxybriara-5(16),13-diene-12,
18-dione 
nThese cytotoxic data were reported by Sheu et al. See ref. 30. 
 
2.2 Erythropodium (family Spongiodermatinae) 

A. Erythropodium caribaeorum 

Relatively uncommon, the only documented species of the genus, E. caribaeorum, can be found in the 

Caribbean water. E. caribaeorum produces a series of diterpenoids of the briarane skeleton class. 

Erythrolides A (170) and B (171) were isolated from the CHCl3 extract of E. caribaeorum, that was 

collected at Carrie Bow Cay, Belize. The structure, including the absolute stereochemistry of erythrolide A 

(170) was elucidated by X-Ray crystallographic methods, and the structure of erythrolide B (172) was 

determined by the interpretations of spectral analyses (1H and 13C NMR) and chemical methods.48 It is 

noted that erythrolide A (170) appeared to be produced in nature from erythrolide B (171) by a 

di-π-methane rearrangement. In the continuing researches for E. caribaeorum, fifteen novel diterpenoids, 

erythrolides C–Q (172–186),42,49–51 and three unnamed new erythrolide derivatives (187–189),52 have been 

isolated from the gorgonian coral, E. caribaeorum, collected in the West Indian Islands. The structures and 

relative configurations of erythrolides (172–189) were elucidated by extensive spectral analyses (IR, UV, 

MS, 1H and 13C NMR), including 1D and 2D NMR studies. In addition, the structures and absolute 

stereochemistry of erythrolides K (180) and P (185) were confirmed by X-Ray crystallographic 

methods.50,51 The diterpenoids from E. caribaeorum possess certain structural features not found so far in 

the literatures for compounds of briarane-type. Erythrolides A (170) and L (181) possess di-π-methane 

rearrangement carbon skeletons. Erythrolides C (172), D (173), H (177), and metabolite (189) have 

2R*,3R*-epoxy groups in the ten-membered rings while erythrolides E–G (174–176), I (178), P (185), Q 

(186), and metabolites (187 and 188) have ether bridges across the ten-membered rings between C-2 and 

C-8. Erythrolides D (173), F (175), L (181), and compound (188) contain unusual acetoxyacetate groups 

attaching at C-9. Erythrolides J (179), M (182), and N (183) contain 4-acetoxybutanoyl groups. Erythrolide 

K (180) possesses an unusual bicyclo[9.2.1] tetradecane skeleton. On basis of the special structural features, 

erythrolide derivatives may well be chemotaxonomic markers for E. caribaeorum. Erythrolides B (171) 



 

 

and D (173) were found to show feeding deterrent effect to inhibit fish feeding behavior in field assays.53 

 

Table 6. The Briarane-Type Metabolites from E. caribaeorum 
Structure No. Name Biological activity Ref.
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Structure No. Name Biological activity Ref.
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2.3 Gorgonella (family Ellisellidae) 

A. Gorgonella umbraculum 

Four new briarane-type diterpenoids, umbraculolides A–D (190–193), were isolated from the Indian Ocean 

gorgonian coral, G. umbraculum, collected from Tuticorin area of the Bay of Bengal and Vallinukum coast, 

Tamil Nadu, India, respectively, and their structures were established by extensive spectroscopic methods 

(IR, UV, MS, 1H and 13C NMR).54,55 Umbraculolide A (190) showed antibacterial activity.54  



 

 

Table 7. The Briarane-Type Metabolites from G. umbraculum 
Structure No. Name Biological activity Ref.
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2.4 Junceella (family Ellisellidae) 

A. Junceella fragilis 

In 1989, Shin et al. reported the occurrence of four novel briarane derivatives, which were named 

junceellolides A–D (194–197), in the South China Sea gorgonian coral, J. fragilis, collected from coastal 

water off the Sanya Bay, Hainan Island, People’s Republic of China. The structure determination works of 

junceellolides A–D (194–197) were based on spectral analyses (IR, UV, MS, 1H and 13C NMR).56 In the 

biological activity testing, junceellolide B (195) showed antiviral activities against Herpes simplex viruses 

I and II. As antiinflammatory agents, junceellolides A–D (194–197) have displayed antiinflammtory 

activity, and junceellolides B (195) and C (196) were found to inhibit bee venom-derived phospholipase A2 

in vitro testing.56 Four new diterpenoids with briarane skeleton, (–)-4-deacetyljunceellolide D (198), 

(+)-11α,20α-epoxyjunceellolide D (199), (–)-11α,20α-epoxy-4-deacetyljunceellolide D (200), and 

(–)-11α,20α-epoxy-4-deacetoxyjunceellolide D (201), were isolated from the Indonesian gorgonian coral J. 

fragilis. The structures of the new metabolites (198–201) were established on the basis of extensive NMR 

studies and by comparison the spectral data (1H and 13C NMR) with those of the other known briarane 

compounds. The absolute configurations for briaranes (198–201) were determined by the modified 

Mosher’s method and by unambiguous chemical interconversions.57 Besides, a solid, (+)-junceellolide A 



 

 

(202) ([α]D +3.1°; c 0.6, CHCl3), which was proven as the antipodal derivative of (–)-junceellolide A (194) 

([α]D –7.9°; c 0.6, CHCl3) by the rotation value.56,57  

A species of J. fragilis, collected in the Taiwanese tropical water, yielded three new briaranes, 

junceellolides E–G (203–205). The structures, including the relative stereochemistry of metabolites 

(203–205) were elucidated from extensive NMR experiments, and the structure of 203 was further 

confirmed by X-Ray crystallography.58 The six-membered rings in junceellolides E (203) and F (204) were 

found to exist in boat conformations.58  

 
Table 8. The Briarane-Type Metabolites from J. fragilis 

Structure No. Name Biological activity Ref.
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Structure No. Name Biological activity Ref.
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B. Junceella gemmacea 

Three new briaranes (206–208) were isolated from the gorgonian coral, J. gemmacea, collected at 

Broadhurst Reef, Australia. The structures, including the absolute sterechemistry of compounds (206–208) 

were deduced on the basis of extensive 1D and 2D NMR and Horeau kinetic resolution experiments.59 

Compound (207) was also isolated from a Taiwanese gorgonian coral, Briareum sp., and designated as 

9-deacetylbriareolide H.30 In addition, six new highly oxidized diterpenoids, gemmacolides A–F (209–214), 

were isolated from the gorgonian coral, J. gemmacea, collected at Jokaj Pass, Kolonia, Pohnpei, Micronesia. 

The structures and relative configurations of gemmacolides A–F (209–214) were assigned on the basis of 

extensive NMR studies.60 Gemmacolide E (213) is the first 14-hydroxylbriarane-type metabolite. In the 

insecticidal activity testing, gemmacolide A (209) showed activity against the newly hatched larvae of the 

southern corn rootworm, Diabrotica undecimpunctata howardi and the tobacco budworm, Heliothis 

virescens, respectively.61 Gemmacolides A (209), B (210), and D (212) exhibited selective 

immunomodulatory activity with MLR (mixed lymphocyte reaction) to LcV (lymphocyte viability) in 



 

 

ratios of 23, 23, and 11, respectively. The ratios indicate immunosuppressive activity at concentrations 

significantly lower than the cytotoxicity levels.62 
 
Table 9. The Briarane-Type Metabolites from J. gemmacea 
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a(1R,2R,5Z,7R,8S,9R,10R,11R,14R,17S)-2,14-diacetoxy-8,17:11,20-bisepoxy-9-hydroxybriara-5-en-18-one 
b(1R,2R,5Z,7R,8S,9R,10R,11Z,14R,17S)-2,14-diacetoxy-8,17-epoxy-9-hydroxybriara-5,11-dien-18-one 
cThe cytotoxic data of briarane (207) were reported by Sheu et al. See ref. 30. 
d(1R,2R,5Z,7R,8S,9R,10R,12R,14R,17S)-2,14-diacetoxy-8,17-epoxy-9,12-dihydroxybriara-5,11(20)-dien-18-one 



 

 

C. Junceella juncea 

Isaacs et al. have isolated six new diterpenoids, denoted as juncins A–F (215–220) from J. juncea. The 

organisms were collected from sites in the entrances to the Gulf of Eilat and Gulf of Suez, Red Sea. Their 

structures and relative configurations were determined through a combination of 1D and 2D NMR spectral 

analyses, and the absolute stereochemistry of juncin E (219) was established by X-Ray analyses.62,63 

However, the locations of acyl groups in juncins C (217) and F (220) were not determined completely.63 

Juncin E (219) showed insecticidal activity against the newly hatched larvae of the southern corn rootworm, 

Diabrotica undecimpunctata howardi, and the tobacco budworm, Heliothis virescens, respectively.61  

Two new briarane-type metabolites, juncins G (221) and H (222), along with the antipodal derivatives of 

known gemmacolides A (223) and B (224) were isolated from the gorgonian coral J. juncea collected in the 

Indian Ocean.64 The NMR spectral data (1H and 13C) of metabolites (223) and (224) were identical with 

those of gemmacolides A (209) and B (210), respectively. However, they differed in their physical state and 

sign of specific rotation, and the structures of briaranes (223) and (224) could then regarded as 

(+)-gemmacolide A and (+)-gemmacolide B, respectively.60,64 In addition, a new cytotoxic briarane, 

juncenolide A (225), was isolated from the Taiwanese gorgonian coral, J. juncea. The structure of 225 was 

established by 2D NMR studies, and further confirmed by X-Ray crystallographic analyses.65 

 

Table 10. The Briarane-Type Metabolites from J. juncea 
Structure No. Name Biological activity Ref. 
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Structure No. Name Biological activity Ref. 
OAc

RO

O

O

OH
H

AcO
O

ClAcO

 

 

 

222 

 

 

juncin H (R = COCH2CH(CH3)2) 

 

          64 

OAc
AcO

O

O

OH

AcO

ClAcO

RO

HO

 

 

223 

224 

 

(+)-gemmacolide A (R = Ac) 

(+)-gemmacolide B  

(R = COCH2CH(CH3)2) 

 

          64 

          64 

 
OCOCH(CH3)2AcO

O

O

OH
H

AcO
O

Cl

 

 
225 

 
juncenolide A 

 
cytotoxic toward the human colon 

adenocarcinoma (DLD) and oral 

epidermoid carcinoma (KB-16) cells at a 

concentration of 3.4 and 5.9 µg/mL, 

respectively. 

         
65

 
D. Junceella squmata 

The South China Sea gorgonian coral, J. squmata, was found to contain two new briarane-type metabolites, 

junceellins A (226) and B (227).66,67 The structures of briaranes (226) and (227) were elucidated by spectral 

analyses (IR, UV, MS, 1H and 13C NMR). Furthermore, the structure and absolute stereochemistry of 

junceellin A (226) were determined by crystallographic method.68 Junceellin A (226) was also isolated 

from the gorgonian corals Junceella fragilis and Gorgonella umbraculum,54,56,57 and its hydrolytic products 

exhibited cytotoxicity toward the A-549 tumor cells.69  

 

Table 11. The Briarane-Type Metabolites from J. squmata 

 

2.5 Plexaureides (family Plexauridae) 

A. Plexaureides praelonga 

Praelolide (228) is a new compound that was isolated from the South China Sea gorgonian coral, P. 
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praelonga. The structure, including the absolute stereochemistry of praelolide (228) was elucidated by a 

combination of spectral and X-Ray single-crystal diffraction analyses.70,71  This metabolite was also 

isolated from both the gorgonian corals Gorgonella umbraculum and Junceella fragilis, and exhibited 

antiviral activity.54,56,57 

 

Table 12. The Briarane-Type Metabolite from P. praelonga 

 

2.6 Unidentified Gorgonian Corals 

Four new briaranes, nui-inoalides A–D (229–232), were isolated from the undescribed gorgonian corals 

collected in Pohnpei and Ant atoll, Micronesia.62 The structures of the new briaranes (229–232) were 

determined by spectral analyses. The authors supposed that nui-inoalide B (230) might have arisen from an 

allylic rearrangement of the corresponding 6-chlorobriarane, gemmacolide D (212). Nui-inoalide A (229) 

exhibited selective immunomodulatory activity with mixed lymphocyte reaction (MLR) to lymphocyte 

viability (LcV) in ratio of 15.62  

 

Table 13. The Briarane-type Metabolites from the Unidentified Gorgonian Corals 
Structure No. Name Biological activity Ref. 
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3. PENNATULACEA 

3.1 Anthoptilum (family Anthoptilidae) 

A. Anthoptilum cf. kukenthali 

Marine coelenterates of the order Pennatulacea have been proven to be rich sources of diterpenoids 

featuring the skeletal class of briarane. The Australian sea pen coral, A. kukenthali, has afforded five new 

briarane-type diterpenoids, which designated as anthoptilides A–E (233–237). The structures of briaranes 

(233–237) were determined on the basis of their spectral data (IR, UV, MS, 1H and 13C NMR). 

Single-crystal X-Ray determination was performed on anthoptilide A (233). The senecioate and benzoate 

substituents in the C-2 positions of anthoptilides A (233) and D (236), respectively, both of which are rare 

among briarane-type metabolites. Briaranes (233–237) showed activity to inhibit [3H]DPCPX binding to 

rat-brain adenosine A1 receptors.72 

 

Table 14. The Briarane-type Metabolites from A. kukenthali 

 

3.2 Cavernulina (family Veretillidae) 

A. Cavernulina grandiflora 

Three new diterpenoids, cavernuline (238), O-deacetylpropionyl cavernuline (239), and cavernulinine 

(240), were isolated from a new species of sea pen coral, C. grandiflora. The structures of metabolites 

(238–240) were elucidated on the basis of spectral evidence (UV, IR, MS, 1H and 13C NMR).73 
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Table 15. The Briarane-Type Metabolites from C. grandiflora 
Structure No. Name Biological activity Ref. 
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3.3 Funiculina (family Funiculinidae) 

A. Funiculina quadrangularis 

Six new briarane-type metabolites, funicolides A–E (241–245) and 7-epifunicolide A (246), along with a 

known metabolite, brianthein W (81),23 were isolated from the luminescent sea pen coral, F. 

quadrangularis, collected in the Vada and Capraia Islands in the Tuscan archipelago, Ligurian Sea. The 

structures and relative configurations of briaranes (241–246) were established by extensive spectroscopic  

(IR, UV, MS, 1H and 13C NMR) and chemical methods.74 Due to the slow flipping rotation in the 

ten-membered ring, the kinetic and equilibrium NMR spectral studies were performed on funicolides A 

(241), D (244), brianthein W (81), and a chemical derivative of brianthein W, 7-epibrianthein W. These 

kinetic and equilibrium NMR spectral observations and molecular mechanics calculations for briaranes (81, 

241, and 244), and 7-epibrianthein W, led to general views on the conformational preferences of 

diterpenoids of this class.75 

 

Table 16. The Briarane-Type Metabolites from F. quadrangularis 

 

3.4 Pteroeides (family Pteroeididae) 

A. Pteroeides laboutei 

P. laboutei, a sea pen coral collected in the Mediterranean Sea, was studied for its chemical constituents. 
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Three novel highly oxidized metabolites, featuring the briarane skeleton, were designated as pteroidine 

(247), 12-O-deacetyl-12-O-benzoylpteroidine (248), and labouteine (249). Briarane (248) is the first 

briarane-type metabolite possessing a benzoate functional group, and briarane (249) is also the first 

briarane compound existing tetrahydroxyl groups.76  

 
Table 17. The Briarane-Type Metabolites from P. laboutei 

 

3.5 Ptilosarcus (family Pennatulidae) 

A. Ptilosarcus gurneyi 

A toxic briarane, ptilosarcone (250), and its decomposition product, ptilosarcenone (251), were isolated 

from a North Pacific Ocean sea pen coral, P. gurneyi. The gross structures of briaranes (250) and (251) were 

elucidated by NMR data (1H and 13C) and by comparison with those of a known metabolite, briarein A (1).77   

In the later studies for this marine organism, the samples were collected from sites near Sidney, British 

Columbia, and Seattle, Washington, and afforded the compounds ptilosarcone (250) and ptilosarcenone 

(251), along with five new briaranes, 11-hydroxyptilosarcenone (252), ptilosarcen-12-ol (253), 

ptilosarcen-12-acetate (254), ptilosarcen-12-propionate (255), and ptilosarcol (256) were isolated, and their 

(briaranes 250–256) complete structures and stereochemistry were elucidated by detailed spectral analyses 

(IR, UV, MS, 1H and 13C NMR).78 Briarane (251) (showed potential insecticidal activity toward the larvae 

of the tobacco hornworm, Manduca sexta.78 

 
Table 18. The Briarane-type Metabolites from P. gurneyi 
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3.6 Renilla (family Renillidae) 

A. Renilla reniformis 

Benethic marine organisms such as invertebrates also produce natural products to deter the settlement of 

fouling organisms. Much of the researches in this field have focused on the development of commercial 

alternatives to current commercial antifouling paints. Based on above request, the extracts of the Atlantic 

sea pansy, R. reniformis, which inhibit the settlement of barnacle larvae, have been found to contain three 

new metabolites, renillafoulins A–C (257–259).79 The structures of metabolites (257–259) were established 

by using 1D and 2D NMR spectral data and by comparison with those of the other known briarane 

metabolites. The structure and relative configuration of briarane (259) were further confirmed by 

single-crystal X-Ray diffraction data analyses. Renillafoulins A–C (257–259) show antifouling activity 

toward the barnacle larvae.79–83  

 

Table 19. The Briarane-Type Metabolites from R. reniformis 

 

3.7 Scytalium (family Virgulariidae) 

A. Scytalium tentaculatum 

The sea pen octocoral, S. tentaculatum, collected by trawling, near Port Douglas, Queensland, Australia, 

Structure No. Name Biological activity Ref. 
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renillafoulins A–C (257–259) inhibit the 
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was found to contain three novel diterpenoids (260–262), related to briarane-type metabolites. The 

structures and relative configurations of briaranes (260–262) were determined by NMR  spectral analyses 

(1H and 13C) and chemical methods. However, in briarane (262), the stereochemistry of C-5 hydroxyl group 

was not determined. Unlike the most briarane-type metabolites, the γ-lactone in briaranes (261) and (262) 

were disappeared and replaced by furan groups, respectively.84 The 3-keto group in briaranes (261) and 

(262), and the 5-hydroxyl group in (263) are never found in other briarane class compounds.  

 

Table 20. The Briarane-Type Metabolites from S. tentaculatum 

a(1R*,2R*,5Z,10R*,11S*,12R*,14S*)-14-acetoxy-11,12-epoxy-3-oxobriara-5,7,17-trien-2-yl 3-methylbutanoate 
b(1R*,2R*,5Z,10S*,11Z,14S*)-2,14-diacetoxybriara-5,7,11,17-tetraen-3-one 
c(1R*,2R*,6E,10S*,11Z,14S*)-14-acetoxy-5-hydroxy-18-oxobriara-6,8(17),11-trien-2-yl 3-methylbutanoate 
 

3.8 Stylatula (family Virgulariidae) 

A. Stylatula sp. 

Stylatulide (263) is the first briarane-type metabolite with toxicity originally isolated from the sea pen coral, 

Stylatula sp., collected in the intertidal zone at Isla Partida, Gulf of California. This metabolite crystallized 

from 1:1 hexane:dichloromethane solution, and its structure, including the absolute configuration was 

determined by single-crystal X-Ray diffraction analyses.85 In the later study, a new metabolite, 

17-epistylatulide (264) and three unnamed new briaranes (265–267), along with stylatulide (263) have been 

isolated from this organism. The structures of 264–267 were elucidated by spectral analyses (UV, IR, MS, 
1H and 13C NMR) and chemical methods. Moreover, the complete NMR data (1H and 13C) of stylatulide 

(263) were assigned.86 Stylatulide (263) was found to be toxic to the larvae of the copepod Tisbe furcata 

johnsonii.85 
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Table 21. The Briarane-Type Metabolites from Stylatula sp. 
Structure No. Name Biological activity Ref. 
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3.9 Veretillum (family Veretillidae) 

A. Veretillum cynomorium 

Seven novel briaranes, verecynarmins A–G (268–274), were isolated from both the Mediterranean 

nudibranch mollusk, Armina maculata (family Arminidae) and its prey, the sea pen coral, V. 

cynomorium.87–89 Verecynarmin A (268) also is the first briarane-type metabolite from a Mediterranean 

marine organism.87 The structures of briaranes (268–274) were elucidated by extensive spectral studies, 

including 1D and 2D NMR experiments, and by chemical methods. The absolute configuration of 

verecynarmin A (268) has been elucidated by chemical methods.87 Verecynarmins B–D (269–271) are 

proven that they are single compounds existing in slowly interconverting forms by NMR spectral and 

chemical techniques.88 The 14-keto groups in metabolites (269–273),88,89 and the 13-chloro group in 

(271),88 are never found in other briarane-type compounds. 
 

Table 22. The Briarane-Type Metabolites from V. cynomorium 
Structure No. Name Biological activity Ref. 
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B. Veretillum malayense 

The malayenolides A–D (275–278), which are biologically active diterpenoids of the briarane class, have 

been isolated from the sea pen coral, V. malayense, collected near Monado, Sulawesi, Indonesia. The 

structures of metabolites (275–278) were elucidated on the basis of detailed spectral analyses (UV, IR, MS, 
1H and 13C NMR).90 The benzoate groups in briaranes (275) and (276), and the senecioate groups in 

briaranes (277) and (278) are rare among marine natural products.72,76 Malayenolides A–D (275–278) 

showed toxicity in the brine shrimp assay. 
 
Table 23. The Briarane-Type Metabolites from V. malayense 
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4. ALCYONACEA 

4.1 Minabea (family Alcyoniidae) 

A. Minabea sp.  

Ten new representatives of the briarane skeleton class, namely minabeins 1–10 (279–288), were isolated 

from the soft coral, Minabea sp., collected in Truk Lagoon, Eastern Caroline Islands. The structures of 

metabolites (279–288) were established on the basis of spectral analyses (IR, UV, MS, 1H and 13C NMR). 

This is the first observation of the occurrence of briarane-type compounds in the soft corals of order 

Alcyonacea.91 



 

 

Table 24. The Briarane-Type Metabolites from Minabea sp. 
Structure No. Name Biological activity Ref. 
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4.2 Nephthea (family Nephtheidae) 

A. Nephthea sp. 

Chemical examination of a soft coral species of the Nephthea genus, collected from the Hutbay Island of 

the Andaman and Nicobar group of Islands of the Indian Ocean, has afforded an unnamed novel 

briarane-type metabolite (289). The structure, including the relative configuration of 289, was elucidated by 

spectral analyses (IR, UV, MS, 1H and 13C NMR). Unlike the structure of the briaranes that have been 

reported, there are no complex functional groups, but there is a bicyclo[8.4.0] system in the carbon skeleton 

of 289. However, this is the first briarane containing a 14β-hydroxyl group. Briarane possessing a double 

bond between C-10 and C-11 is also never found previously. 
 
Table 25. The Briarane-Type Metabolite from Nephthea sp. 

 

5. STOLONIFERA  

5.1 Pachyclavularia (family Tubiporidae) 

A. Pachyclavularia violacea 

The investigation on the chemical constituents of P. violacea, collected in the shallow reefs near Sek point 

off Madang, Paupa New Guinea, has afforded four novel briaranes, pachyclavulariolides A–D (290–293). 

The structures of 290–293 were elucidated by analyses of spectroscopic data (IR, UV, MS, 1H and 13C 

NMR). The structure and relative configuration of pachyclavulariolide B (291) were further confirmed by 

single X-Ray diffraction analyses.93 Briaranes (290–293) are the first briarane-type metabolites possessing 

ether linkage between C-11 and C-14, in the six-membered ring. Furthermore, in the structures of briaranes 

(291) and (292), the C-7 α-oriented oxygen-bearing functional groups were rarely found previously.74 

 
Table 26. The Briarane-Type Metabolites from P. violacea 

Structure No. Name Biological activity Ref. 
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B. Pachyclavularia sp. 

Extraction of an octocoral, Pachyclavularia sp., collected in the Great Barrier Reef, Australia, led to the 

isolation of three new unnamed briaranes (294–296). The structures of diterpenoids (294–296) were 

determined by spectral analyses (UV, IR, MS, 1H and 13C NMR). Briarane (294) exhibited ichthyotoxicity 

toward the mosquito fish, Gambusia affinis.94 

 
Table 27. The Briarane-Type Metabolites from Pachyclavularia sp. 

Structure No. Name Biological activity Ref. 
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5.2 Tubipora (family Tubiporidae) 

A. Tubipora sp. 

In 1990, a soft coral of the genus Tubipora, collected at Kuchino-shima Island of the Satsunan archipelago, 

whose organic extract exhibited cytotoxicity toward the B-16 mouse melanoma tumor cells, was studied for 

discovering potential antitumor agents. A new diterpenoid of the briarane ring system, tubiporein (297), 

was isolated from this organism. The gross structure was determined by 1H and 13C NMR-based spectral 

analyses. Moreover, the relative configuration was elucidated by the interpretations of NOE experiments 

and the coupling constant calculations. Tubiporein (297) exhibited cytotoxicity toward the B-16 tumor 

cells.95 

 

Table 28. The Briarane-type Metabolite from Tubipora sp. 

 
6. NUDIBRANCH 

6.1 Tochuina (family Tritoniidae) 

A. Tochuina tetraquetra 

T. tetraquetra is a common nudibranch that appeared in the North Pacific Ocean coast. The chemical 
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constituents of T. tetraquetra, collected at Bamfield, British Columbia, Canada, has been studied. A known 

toxic briarane-type metabolite, ptilosarcenone (251), which was found from a North Pacific Ocean sea pen 

coral, Ptilosarcus gurneyi, previously.77,78 along with an unnamed new briarane (298), were obtained from 

the skin extracts of T. tetraquetra.96 Based on detailed spectral analyses (UV, IR, MS, 1H and 13C NMR), the 

structure of briarane (298) was elucidated as a butanoate analogue of 251. The sea pen coral and soft coral 

were proven to be the diets of nudibranch, T. tetraquetra.97 However, an exhaustive study of the chemical 

constituents of P. gurneyi, collected at Seattle, Washington, and Sidney, B. C. failed to obtain briarane (298) 

or any metabolite that could be viewed as precursor to briarane (298).77,78 Therefore, there is no obvious 

evidence to indicate that briarane (298) was originally from P. gurneyi, however, the authors suggested 

probably the chemistry of the Bamfield population of P. gurneyi, differs slightly from the Strait of Georgia 

and Puget Sound populations.96,97 

 

Table 29. The Briarane-Type Metabolite from T. tetraquetra 

 
7. SPONGE 

7.1 Psammaplysilla (family Verongiidae) 

A. Psammaplysilla purpurea 

A new diterpenoid, bis(deacetyl)solenolide D (299) was isolated from the marine sponge, P. purpurea, 

collected on the coast of Ie island, Okinawa Prefecture, Japan. The structure of metabolite (299) was 

established by NMR spectral analyses (1D and 2D) and chemical methods, and by comparison the spectral 

data with those of a known metabolite, solenolide D (124).37 However, because of the stereochemistry of 

solenolide D (124) has been revised,32,38 therefore, the hydroxyl group attaching at the C-12 position in 

briarane (299) should be β-oriented. In the antifouling activity assay, bis(deacetyl)solenolide D (299) 

exhibited activity to regulate the biofilm formation.98 Briarane (299) is the only briarane-type metabolite 

from sponge. The origin of this compound is still uncertain. 
 
Table 30. The Briarane-Type Metabolite from P. purpurea 

Structure No. Name Biological activity Ref. 
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8. CONCLUSION 

Terpenoid compounds are often present in large amounts in marine invertebrates, and as a major class, 

represent the largest percentage of natural products isolated from marine organisms.99 Furthermore, marine 

invertebrates were proven to possess the ability to synthesize the terpenoid metabolites.100 Up to date, Two 

hundred ninety-nine briarane-type diterpenoids have been isolated from numerous of marine organisms, 

including soft corals (Gorgonacea, Pennatulacea, Alcyonacea, and Stolonifera), a nudibranch and a sponge. 

The structures, names, biological activities, and related references of these metabolites have been presented 

in this review article. These compounds exhibited potential activities in the applications for ecological, 

agrochemical, and pharmaceutical researches in future. 
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