HETEROCYCLES, Vol. 59, No. 1, 2003, pp. 93 - 96, Received, 30th July, 2002

ACID-CATALYZED INTRAMOLECULAR ADDITION OF A HYDROXY GROUP TO VINYLGERMANES

Katsukiyo Miura, Tatsuyuki Takahashi, and Akira Hosomi*

Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Abstract-Vinylgermanes (1), bearing a hydroxy group, were efficiently cyclized to 2-(germylmethyl)tetrahydrofurans (2) in the presence of an acid catalyst. The intramolecular addition of the hydroxy group proceeded in a stereospecific *syn* mode. The acid-catalyzed cyclization of α -alkyl-substituted vinylgermanes (8) gave 1,2-germyl-migration products (9).

Triorganogermyl groups as well as triorganosilyl groups are known to stabilize β -carbenium ions effectively.¹ Application of the β -effect of triorganosilyl groups to organic synthesis has been extensively studied, and a number of synthetically useful organic reactions have been developed for the last few decades.² In contrast, the directing effect of triorganogermyl groups has been little utilized for organic synthesis except that allylgermanes are available for allylation of carbon electrophiles.³ Previously, we have reported that vinylsilanes bearing a hydroxy group are smoothly cyclized to tetrahydrofurans (THFs) and tetrahydropyrans (THPs) by the action of an acid catalyst (path a in Scheme 1).⁴ A plausible mechanism for this cyclization involves the formation of a β -silylcarbenium ion intermediate by protonation of the sp² carbon α to the silyl group and the subsequent intramolecular attack of the hydroxy oxygen to the carbenium ion center. Thus the β -effect of triorganogermyl groups induced us to examine the acid-catalyzed cyclization of vinylgermanes bearing a hydroxy group. We herein report a new method for the synthesis of THFs and THPs utilizing the reactivity of vinylgermanes.

Scheme 1

Treatment of Z-rich 5-tributylgermyl-4-penten-1-ol (**1a**, Z:E = 93:7) with 5 mol% of TiCl₄ gave 2-(tributylgermylmethyl)tetrahydrofuran (**2a**) in 79% yield (Entry 1 in Table 1). As predicted from our previous results,⁴ the reactivity of vinylgermane (**1**) was affected by the geometry of the C-C double bond and the substituent on germanium atom. Under the same reaction conditions, the use of *E*-rich **1a** resulted in a lower yield of **2a** because of slow conversion of (*E*)-**1a** (Entry 2). Benzyldimethylvinylgermane ((*Z*)-**1b**) was cyclized faster than (*Z*)-**1a**, while introduction of a phenyl group into the germyl group markedly decreased the reactivity of the substrate (Entries 3 and 6). TsOH•H₂O and TiCl₂(O*i*-Pr)₂ could be used as acid catalysts although they showed lower catalytic activities (Entries 4 and 5). The present cyclization was applicable to the construction of a THP ring as shown in Eq. 1.

$ \begin{array}{c} $													
Entry	Vinylgermane			Catalyst	Temp	Time	Yield						
	Ge = germyl group		Z:E			/ h	/ %						
1	GeBu ₃	1a	93:7	TiCl ₄	rt	9	79						
2		1a	6:94	TiCl ₄	rt	9	58						
3	GeMe ₂ Bn	1b	99:<1	TiCl ₄	rt	4	83						
4		1b	99:<1	TsOH•H ₂ O	60 °C	24	78						
5		1b	99:<1	$TiCl_2(Oi-Pr)_2$	rt	36	83						
6	GeMe ₂ Ph	1c	93:7	TiCl ₄	rt	48	65						

Table 1. Acid-Catalyzed Cyclization of Vinygermanes (1a-c)^a

^aAll reactions were carried out with 0.50 mmol of **1** in CHCl₃ (2.5 mL).

$$\begin{array}{c} OH \\ GeBu_{3} \end{array} \xrightarrow{5 \text{ mol}\% \text{ TiCl}_{4}} \\ \hline CHCl_{3}, \text{ rt, 24 h} \end{array} \xrightarrow{O} \\ \textbf{GeBu}_{3} \end{array} (1)$$

$$\textbf{3}, \textbf{Z:E} = 97:3 \qquad \textbf{4}, 80\%$$

To examine the stereochemistry of the intramolecular addition of a hydroxy group, the TiCl₄-catalyzed cyclizations of α -deuterated (*Z*)- and (*E*)-vinylgermanes (**5**) were attempted (Eq. 2). As a result, it was found that these cyclizations showed inverse stereochemistry, and the intramolecular addition of a hydroxy group proceeded in a stereospecific *syn* mode. Similar to the case of the intramolecular addition to vinylsilanes,⁴ the *syn* addition can be rationalized by the following mechanism (Eq. 3): (1) attachment of TiCl₄ or a proton⁵ to the hydroxy group of (*Z*)-**5** or (*E*)-**5** forms oxonium ion (**A** or **A'**), (2) intramolecular proton transfer to the sp² carbon α to the silyl group followed by rotation at the least motion turns **A** or **A'** into β -germylcarbenium ion (**B** or **B'**), stabilized by σ - π conjugation,¹ and (3) intramolecular attack of the hydroxy oxygen from the side opposite to the germyl group gives *syn* adduct (**6** or **7**) and regenerates the acid catalyst.

We attempted the application of the present cyclization to the stereoselective synthesis of disubstituted THFs (Table 2). The TiCl₄-catalyzed cyclization of vinylgermane (**1d**), bearing a phenyl group at the position α to the hydroxy group, gave 2,5-disubstituted THF (**2d**) with low *trans*-selectivity (Entry 1). The use of TiCl₂(O*i*-Pr)₂ as catalyst was not effective in improving the stereoselectivity (Entry 2). Vinylgermane (**1e**), substituted at the homoallylic position, was cyclized to 2,4-disubstituted THF (**2e**) with moderate *cis*-selectivity (Entries 3 and 4). In contrast to the results with **1d** and **1e**, the cyclization of vinylgermane (**1f**), substituted at the allylic position, achieved high *trans*-selectivity (Entries 5 and 6). The sense of diastereoselection in the cyclization of each vinylgermane is identical to that in the case with the corresponding vinylsilane.⁴ However, the levels of diastereoselection with **1d** and **1e** are not as high as those with the corresponding vinylsilanes.

		$R^1 \rightarrow R^2$	H —G R ³ Z)-1d-f	eBu ₃	5 mol% acid catalyst CHCl ₃ , rt	$\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \end{array}$	GeB R ³ d-f	u ₃
Entry	Vinylgermane ($Z:E \ge 98:2$)			= ≥98:2)	Catalyst	Time	Yield	trans:cis ^b
	\mathbf{R}^1	\mathbb{R}^2	\mathbf{R}^3			/ h	/ %	
1	Ph	Н	Н	1d	$TiCl_4$	24	81	63:37
2				1d	$TiCl_2(Oi-Pr)_2$	30	92	63:37
3	Н	Ph	Н	1e	$TiCl_4$	24	86	21:79
4				1e	$TiCl_2(Oi-Pr)_2$	24	95	18:82
5	Н	Н	Ph	1f	TiCl ₄	24	83	99:<1
6				1 f	$TiCl_2(Oi-Pr)_2$	50	55	99:<1

Table 2. Stereoselective Cyclization of Vinygermanes ((Z)-1d-f)^a

^aSee footnote a in Table 1. ^bDetermined by 270 MHz ¹H NMR spectral analysis of the isolated product.

Previously, we have disclosed that the acid-catalyzed reaction of (*Z*)-5-alkyl-5-silyl-4-penten-1-ols gives *trans*-2-alkyl-3-silyltetrahydropyrans by 1,2-silyl-migrative cyclization (path b in Scheme 1).⁶ A lot of

synthetic reactions involving cationic 1,2-silyl rearrangement have been developed to date,^{2,7} while similar reactions using organogermanes are little known.⁸ Thus our attention was next focused on 1,2germyl-migrative cyclization of α -alkyl-substituted vinylgermanes (**8**) (Eq. 4). As expected, the TiCl₄catalyzed reaction of vinylgermane (**8a**) gave the desired 1,2-germyl migration product (**9a**) with high *trans*-selectivity. Unfortunately, the yield of **9a** was not good due to facial protiodegermylation of **8a**. The direct cyclization leading to **10a** also was observed as a minor reaction path. Vinylgermane (**8b**), whose methylene tether is shorter than that of **8a** by one carbon, underwent the 1,2-germyl-migrative cyclization to give 3-germyltetrahydrofuran (**9b**) with high *trans*-selectivity but in a lower yield.

In conclusion, we have demonstrated that an internal hydroxy group smoothly adds to vinylgermanes in the presence of an acid catalyst. This cyclization is a novel type of germanium-directed reaction and valuable for the synthesis of germyl-substituted THFs. The reaction mechanism would involve the formation of a β -germylcarbenium ion intermediate. We have also developed a new 1,2-germyl-migrative reaction with high diastereoselectivity.

ACKNOWLEDGEMENT

The present work was partly supported by CREST, Science and Technology Corporation (JST); Grantsin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan.

REFERENCES AND NOTES

- 1. K. A. Nguyen, M. S. Gordon, G. Wang, and J. B. Lambert, *Organometallics*, 1991, **10**, 2798.
- M. A. Brook, "Silicon in Organic, Organometallic, and Polymer Chemistry," John Wiley & Sons, Inc., New York, 2000; J. S. Panek, "Comprehensive Organic Synthesis: Silicon Stabilization," Vol. 1, ed. by B. M. Trost and I. Fleming, Pergamon Press, Inc., Oxford, 1991, pp. 579-627.
- 3. T. Akiyama and J. Iwai, *Tetrahedron Lett.*, 1997, **38**, 853 and references therein.
- K. Miura, S. Okajima, T. Hondo, T. Nakagawa, T. Takahashi, and A. Hosomi, *J. Am. Chem. Soc.*, 2000, **122**, 11348; K. Miura, T. Hondo, S. Okajima, and A. Hosomi, *Tetrahedron Lett.*, 1996, **37**, 487; K. Miura, S. Okajima, T. Hondo, and A. Hosomi, *Tetrahedron Lett.*, 1995, **36**, 1483.
- 5. HCl generated from $TiCl_4$ and 5 or EtOH (stabilizer of $CHCl_3$) may work as catalyst. See ref 4.
- 6. K. Miura, T. Hondo, H. Saito, H. Ito, and A. Hosomi, J. Org. Chem., 1997, 62, 8292.
- 7. H.-J. Knölker, J. Prakt. Chem., 1997, 339, 304 and references therein.
- 8. T. Akiyama and M. Suzuki, *Chem. Commun.*, 1997, 2357; T. Nakano, Y. Senda, and T. Miyamoto, *Chem. Lett.*, 2000, 1408.