STEREOSELECTIVE SYNTHESES OF 2,5-DISUBSTITUTED HYDROXYFURAN DERIVATIVES AS SYNTHON OF POLYETHER ANTIBIOTICS† **HETEROCYCLES, Vol. 59, No. 1, 2003, pp. 101 - 105, Received, 31st July, 2002**

Shinji Nagumo,* Yusuke Ishii, Shinya Kanno, and Norio Kawahara*

Hokkaido College of Pharmacy, Katuraoka 7-1, Otaru 047-0264, Japan nagumo@hokuyakudai.ac.jp

Abstract- Stereoselective syntheses of optically active 2,5-dialkyltetrahydrofurans (**8**), (**11**) and (**12**), which correspond to a central moiety of pamamycin 607, have been achieved on the basis of lactone-ring transformation *via* a phenonium ion, intramolecular Friedel-Crafts reaction, oxidative decomposition of an aromatic ring and differentiation of two ester groups by a chemical or chemo-enzymatic method.

Nature abounds with compounds containing 2,5-disubstituted tetrahydrofurans as polyether antibiotics. Since these compounds are important in many biological processes, there is much interest in stereoselective preparation of such a moiety.¹ Recently, we developed a lactone-ring transformation of -lactone (\pm) -(1) into -lactone (\pm) -(2) *via* a phenonium ion proposed by Cram (Scheme 1).^{2,3} It is noteworthy that the benzylic asymmetric center on the ring can be stereospecifically transferred to a side chain in this ring transformation. The successful conversion stimulated us to carry out stereoselective installation of the second alkyl side chain with a view to developing a new route for synthesis of polyether antibiotics. Our initial attempt to install the second alkyl chain into the 5-membered ring was carried out using Kishi's method,⁴ which was applied to the preparation of *cis*-2,6-disubstituted tetrahydropyran. Alkylation of (\pm) -2 with allyl Grignard reagent followed by reduction with $Et₂SiH/BF₂ Et₂O afforded diol (3) in low yield.$

Faced with this problem, we decided to use an alternative method for installation of the second side chain. We report here the stereoselective syntheses of optically active hydrofurans (**8**), (**11**) and (**12**), which correspond to a central moiety of pamamycin 607 isolated from *S. alboniger* IFO 12738,^{6,7} *via* lactone-ring transformation, intramolecular Friedel-Crafts reaction and decomposition of an aromatic ring.

[†] This paper is dedicated to Prof. Yuichi Kanaoka in memory of his 75th birthday.

Reagents: (a) CH₂=CHCH₂MgBr, -78°C (b) Et₃SiH, BF₃•Et₂O

At first, we prepared optically active -lactone $(-)$ - $(1)^5$ by hydrogenation of $(4S, 5S)$ - 4^8 and subsequent acidic lactonization. Treatment of (-)-1 with TsOH \cdot H₂O in MeNO₂ at 70[°]C gave (-)-2⁵ in 97% yield. After reduction of (-)-2 with DIBALH, treatment of the resulting lactol $(5)^5$ with BF₃ Et₂O resulted in an intramolecular Friedel-Crafts reaction,⁹ giving a bridgehead tricyclic compound (6)⁵ in 98% yield. The structure of 6 was determined by ${}^{1}H$ and ${}^{13}C$ NMR and other spectral data. The ${}^{1}H$ NMR spectrum exhibited only two aromatic singlet resonances (6.72, 6.48) and benzyl methine proton resonance (4.95, $J = 5.9$ Hz). A newly generated asymmetric center could be completely controlled by use of the nature of the bridgehead ring. Next, we attempted the oxidative decomposition of the aromatic ring using Sharpless's method.¹⁰ Treatment of 6 with a catalytic amount of $RuCl_3$ in the presence of NaIO₄ in MeCN, CCl₄ and H₂O followed by methylation with CH₂N₂ produced *cis*-diester (7)⁵ in 40% yield (2) steps).

Reagents: (a) 20%Pd(OH)₂-C, H₂ (b) 2N HCl (c) p -TsOH•H₂O, MeNO₂, 70°C (d) DIBALH, -78°C (e) BF₃•Et₂O, MeCN, 0°C (f) RuCl₃•nH₂O, NaIO₄, MeCN, CCl₄, H₂O, 0°C (g) CH₂N₂, Et₂O, 0°C (h) NaBH₄, MeOH, 0°C

The final step toward our goal was differentiation of the two ester groups of **7**. We used two methods. One of them was a chemical method. When 7 was treated with NaBH₄ in MeOH at 0° C, reduction proceeded regioselectively to give 8^5 in 90% yield.¹¹ As an alternative effort, we confirmed the regioselective enzymatic hydrolysis^{12,13} of diacetate (10). Dimethyl ester (7) was converted into 10⁵ by LAH reduction of **7** followed by conventional acetylation. When **10** was treated with lipase Amamo PS (*Pseudomonas* sp.) in phosphate buffer at 33 ˚C for 4 h, hydrolysis proceeded with fairly good regioselectivity to give monoacetate $(11)^5$ in 67% yield along with 12^5 (10%). Fortunately, these compounds could be separated by column chromatography with silica gel. Compounds (**8**), (**11**) and (**12**) can be used in the synthetic studies of pamamycin 607.

Scheme 3

Reagents: (a) LiAlH₄, THF, 0°C (b) Ac₂O, DMAP, Py, 0°C (c) lipase Amano PS, 0.1 M phosphate buffer, 33°C, 4 h

In conclusion, we synthesized **8**, **11** and **12** based on lactone-ring transformation *via* a phenonium ion, intramolecular Friedel-Crafts reaction, oxidative decomposition of an aromatic ring and differentiation of diester by a chemical or chemo-enzymatic method. Further attempts to convert of the compounds into pamamycin 607 are in progress.

ACKNOWLEDGEMENTS

We are grateful to the Akiyama Foundation (to S. N.) for its support to a part of this project. We also thank Dr. Yoshihiko Hirose (Amano Pharmaceutical Co., Ltd.) for generous gift of Amano PS.

REFERENCES AND NOTES

1 (a) J. Harmange and B. Figadère, *Tetrahedron: Asymmetry,* 1993, **4**, 1711. (b) T. L. Boivin, *Tetrahedron,* 1987, **43**, 3309.

- 2 (a) S. Nagumo, T. Furukawa, M. Ono, and H. Akita, *Tetrahedron Lett*., 1997, **38**, 2849. (b) S. Nagumo, T. Hisano, Y. Kakimoto, N. Kawahara, M. Ono, T. Furukawa, S. Takeda, and H. Akita, *Tetrahedron Lett*., 1998, **39**, 8109. (c) S. Nagumo, M. Ono, Y. Kakimoto, T. Furukawa, T. Hisano, M. Mizukami, N. Kawahara, and H. Akita, *J. Org. Chem*., In press.
- 3 Similar ring transformation can be applied to the ether ring. S. Nagumo, Y. Ishii, Y. Kakimoto, and N. Kawahara, *Tetrahedron Lett*., 2002, **43**, 5333.
- 4 M. D. Lewis, J. K. Cha, and Y. Kishi, *J. Am. Chem. Soc.*, 1982, **104**, 4976.
- 5 All new compounds were identified by spectroscopic data. For representative compounds, **6** (white needle): mp 89-91[°]C (AcOEt-hexane); $\left[\right]_D^{20} - 13.4^\circ$ (c = 1.03, CHCl₃); EI-MS m/z 234 (M⁺), 205; HR-MS m/z 234.1284 (Calcd for C₁₄H₁₈O₃: 234.1255); ¹H-NMR (270 MHz, CDCl₃) 6.72 (1H, s), 6.48 (1H, s), 4.95 (1H, d, *J* = 5.9 Hz), 4.51-4.43 (1H, m), 3.85 (3H, s), 3.84 (3H, s), 3.45-3.32 (1H, m), 2.20-2.03 (1H, m), 1.94-1.83 (3H, m), 1.20 (3H, d, $J = 7.3$ Hz); ¹³C-NMR (68 MHz, CDCl₃) 148.07 (s), 147.00 (s), 132.23 (s), 128.92 (s), 110.12 (d), 107.24 (d), 79.09 (d), 77.15 (d), 55.97 (q), 55.92 (q), 36.74 (d), 35.69 (t), 22.34 (t), 14.78 (q). **7** (colorless oil): $\left[\begin{array}{cc} \text{ }\\ \text{ }\\ \text{ }\\ \text{ }\\ \end{array}\right]$ ²⁰ -25.1° (c = 1.01, CHCl₃); IR (neat) 1738 cm⁻¹; EI-MS m/z 185 (M⁺-OCH₃), 157; HR-MS m/z 185.0807 (Calcd for $C_9H_{13}O_4$ (M⁺- OCH₃): 185.0813); ¹H-NMR (270 MHz, CDCl₃) 4.47 (1H, dd, *J* = 8.2, 4.6 Hz), 4.11 (1H, dt, *J* = 8.2, 6.3 Hz), 3.73 (3H, s), 3.69 (3H, s), 2.72 (1H, quintet, *J* = 7.0 Hz), 2.32-2.15 (1H, m), 2.14-1.97 (2H, m), 1.83-1.66 (1H, m), 1.32 (1H, d, *J* = 7.0 Hz); ¹³C-NMR (68 MHz, CDCl₃) 174.40 (s), 172.96 (s), 81.83 (d), 76.58 (d), 51.46 (q), 51.13 (q), 44.28 (d), 29.79 (t), 28.56 (t), 13.98 (q). **8** (colorless oil): $\left[\begin{array}{cc} \int_{D}^{20} -36.5^{\circ} \text{ (c = 1.00, CHCl}_3) \text{; IR (neat) 3454, 1738 cm}^{-1} \text{;} \end{array}\right]$ EI-MS m/z 157 (M⁺- CH₂OH), 125; HR-MS m/z 157.0860 (Calcd for C₈H₁₃O₃ (M⁺- CH₂OH): 157.0864); ¹H-NMR (270 MHz, CDCl₃) 4.10-3.98 (2H, m), 3.79-3.67 (1H, m), 3.69 (3H, s), 3.45 (1H, dd, *J* = 11.5, 5.5 Hz), 2.65 (1H, quintet, *J* = 6.9 Hz), 2.25-1.65 (5H, m), 1.23 (3H, d, *J* = 6.9 Hz); ¹³C-NMR (68 MHz, CDCl₃) 174.92 (s), 80.69 (d), 79.59 (d), 64.91 (t), 51.63 (q), 44.12 (d), 28.74 (t), 26.82 (t), 13.65 (q). **11** (colorless oil): $\begin{bmatrix} 1 \end{bmatrix}_{D}^{20}$ -4.9° (c = 1.27, CHCl₃); IR (neat) 3470, 1734 cm⁻¹; EI-MS m/z 171 (M⁺- CH₂OH), 149; HR-MS m/z 171.1028 (Calcd for C₉H₁₅O₃ (M⁺-CH₂OH): 171.1020); 1H-NMR (270 MHz, CDCl₃) 4.07 (1H, dd, $J = 11.2$, 6.3 Hz), 3.98 (1H, dd, *J* = 11.2, 6.6 Hz), 4.05-3.94 (1H, m), 3.88-3.78 (1H, m), 3.70 (1H, br d, *J* = 11.2 Hz), 3.48 (1H, dd, *J* = 11.2, 5.9 Hz), 2.06 (3H, s), 2.05-1.87 (3H, m), 1.77-1.56 (3H, m), 1.01 (3H, d, *J* = 6.9 Hz).

¹³C-NMR (68 MHz, CDCl₃) 171.12 (s), 80.97 (d), 78.98 (d), 66.78 (t), 65.20 (t), 37.18 (d), 28.79 (t), 27.12 (t), 20.94 (q), 13.01 (q). **12** (colorless oil): $\left[\begin{array}{c} I_D^{20} - 11.4^\circ \text{ (c = 1.03, CHCl}_3\text{); IR (neat) } 3430, \end{array}\right]$ 1744 cm⁻¹; EI-MS m/z 143 (M⁺- CH(CH₃)CH₂OH), 129; HR-MS m/z 143.0709 (Calcd for C₇H₁₁O₃ $(M^+$ - CH(CH₃)CH₂OH): 143.0708); ¹H-NMR (270 MHz, CDCl₃) 4.17 (1H, dd, *J* = 10.6, 3.0 Hz), 4.15-3.99 (2H, m), 4.02 (1H, dd, *J* = 10.6, 5.6 Hz), 3.69 (1H, dd, *J* = 10.9, 7.3 Hz), 3.56 (1H, dd, $J = 10.9$, 4.3 Hz), 2.54 (1H, br), 2.13-1.60 (5H, m), 2.08 (3H, s), 0.91 (3H, d, $J = 7.3$ Hz); ¹³C-NMR (68 MHz, CDCl₃) 170.99 (s), 83.36 (d), 76.45 (d), 66.13 (t), 65.86 (t), 37.97 (d), 27.68 (t), 26.68 (t), 20.84 (q), 12.09 (q).

- 6 For isolation of pamamycin 607, see: S. Kondo, K. Yasui, M. Katayama, S. Marumo, T. Kondo, and H. Hattori, *Tetrahedron Lett.*, 1987, **28**, 5861.
- 7 For synthesis of pamamycin 607, see: (a) E. Lee, E. J. Jeong, E. J. Kang, L. T. Sung, and S. K. Hong, *J. Am. Chem. Soc*., 2001, **123**, 10131. (b) O. Germay, N. Kumar, and E. J. Thomas, *Tetrahedron Lett*., 2001, **42**, 4969. (c) Y. Wang, H. Bernsmann, M. Gruner, and P. Metz, *Tetrahedron Lett*., 2001, **42**, 7801. (d) S. H. Kang, J. W. Jeong, Y. S. Hwang, and S. B. Lee, *Angew. Chem., Int. Ed.,* 2002, **41**, 1392.
- 8 (a) M. Ono, C. Saotome, and H. Akita, *Tetrahedron: Asymmetry,* 1996, **7**, 2595. (b) H. Akita, I. Umezawa, M. Takano, H. Matsukura, and T. Oishi, *Chem. Pharm. Bull.*, 1991, **39**, 3094.
- 9 For a related cyclization, see: (a) F. López, L. Castedo, and J. L. Mascareñas, *J. Am. Chem. Soc.*, 2002, **124**, 4218. (b) M. Harmata and T. Murray, *J. Org. Chem.*, 1989, **54**, 3761. (c) M. E. Jung, A. B. Mossman, and M. A. Lyster, *J. Org. Chem.*, 1978, **43**, 3698.
- 10 P. H. J. Carlsen, T. Katsuki, V. S. Martin, and K. B. Sharpless, *J. Org. Chem.*, 1981, **46**, 3936.
- 11 For regioselective reduction of diester, see: S. Saito, T. Hasegawa, M. Inaba, R. Nishida, T. Fujii, S. Nomizu, and T. Moriwake, *Chemistry Lett.*, 1984, 1389.
- 12 (a) C. H. Wong and G. M. Whitesides, "Enzymes in Synthetic Organic Chemistry", Elsevier, Oxford, 1994. (b) E. Santaniello, P. Ferraboschi, P. Grisenti, and A. Manzocchi, *Chem. Rev.*, 1992, **92**, 1071.
- 13 We have reported the selective functionalization by lipase between different primary alcohol groups in a complex spiroketal derivative. See: S. Nagumo, T. Arai, and H. Akita, *Tetrahedron Lett.*, 1997, **38**, 5165.