HETEROCYCLES, Vol. 59, No. 2, 2003, pp. 497 - 500, Received, 15th October, 2002 STRUCTURE DETERMINATION OF LUSTROMYCIN, AN ANTIBIOTIC AGAINST ANAEROBIC BACTERIA

Masaki Handa, Hideaki Ui, Daisuke Yamamoto, Soichi Monma, Yuzuru Iwai, Toshiaki Sunazuka, and Satoshi Omura*

Kitasato Institute for Life Sciences, Kitasato University, and The Kitasato Institute, 5-9-1 Minato-ku, Tokyo 108-8641, Japan

Abstract – Extensive homo and heteronuclear two-dimensional NMR studies revealed lustromycin, an anti-anaerobic antibiotic. Its structure consists of a decaline ring system fused to a 10-membered macrolactone and a 14-membered macrolactone having an enol ether moiety conjugated with a maleic anhydride functionality.

In the course of screening of anti-anaerobic antibiotics from actinomycetes, we have found novel antibiotics, thiotetromycin, ¹ clostomicin, ² lustromycin (1), ³ and luminamicin (2). ⁴ Luminamicin (2) was identical with coloradocin whose structure was determined by McAlpine.⁵ The biological properties of **1** were found to be similar to those of 2^{3} . This paper deals with the structure elucidation of lustromycin (1). Structure determination of 1 ($C_{32}H_{38}O_{13}$) was performed based on the NMR spectral analyses. As described in the preceding paper,³ the structure of **1** was expected to resemble **2** ($C_{32}H_{38}O_{12}$) closely. ¹H and ¹³C NMR spectral signals of both compounds observed in CDCl₃ were assigned by various 1D- and 2D-NMR spectral experiments (Table 1).⁶ Comparison of MS and NMR spectral data of 1 and 2 revealed that **1** contained another O-methyl group instead of a C-methyl group present in **2**. ¹H- and ¹³C-NMR spectral analyses of 1 indicated the presence of a 14-membered lactone ring (C-16-C-29) containing an enol ether moiety conjugated with an unsaturated cyclic anhydride, and also the presence of an isopentenyl unit (C-13~C-16, CH₃-14). The spectral NMR data of these parts shown by 1 are in fair agreement with those of 2 as shown in Table 1. Connectivity of the remaining part (C-1~C-12) was further analyzed using ¹H-¹H COSY and HMBC experiments (Figure 1). The partial structures including C-4~C-6, C-7~C-8 and C-9~C-11 were assigned by interpretation of the COSY cross-peaks. HMBC experiments revealed the partial structure C-4 to C-8 by correlations between H-8/C-6, H-5/C-7 and H-6/C-7, and confirmed the direct linkage of C-7 to C-12 by correlations H-6 to C-12 and H-12 to C-8. The

	1			2				2 ^{Ref. 5}		
No.	δ_{C}	(m)	$\delta_{\rm H}$	δ_{C}	(m)	$\delta_{\rm H}$	δ_{C}	(m)	$\delta_{\rm H}$	$\delta_{\rm H}$
1	171.0	(s)	-	173.1	(s)	-	172.8	(s)	-	
2	87.4	(d)	3.73	82.8	(d)	3.75	81.8	(d)	3.79	3.75
3	78.2	(d)	3.93	32.9	(t)	2.46	32.9	(t)	2.43	3.90
						1.41			1.22	
4	45.1	(d)	2.00	38.3	(d)	2.20	37.7	(d)	2.16	1.98
5	123.8	(d)	5.53	128.3	(d)	5.47	128.3	(d)	5.51	5.54
6	130.7	(d)	6.05	130.2	(d)	5.88	129.9	(d)	5.82	6.03
7	28.7	(d)	2.28	29.6	(d)	2.21	29.2	(d)	2.14	2.40
8	32.5	(t)	1.61	27.9	(t)	1.69	27.5	(t)	1.66	1.65
0	(1.0		1.02	7 0 7	(1)	1.43	(0.(1.21	1.02
9	64.8	(d)	4.03	70.5	(d)	3.65	69.6	(d)	3.52	4.03
10	38.2	(t)	2.10	40.9	(d)	1.93	38.8	(d)	1.85	2.06
11	(0.2	(1)	1.69	77 4	(1)	2.25	75.0	(1)	2.10	1.74
11	69.3	(d)	3.97	//.4	(d)	3.35	/5.3	(d)	3.18	4.86
12	37.9	(d)	2.24	38.0	(d)	1.82	37.9	(d)	1.97	2.27
13	/5.3	(s)	-	/6.5	(s)	-	/5.9	(s)	-	-
14	143.1	(s)	-	142.0	(s)	-	141.5	(s)	-	-
15	122.7	(d)	6.04	123.4	(d)	6.04	121.6	(d)	5.85	5.87
16	36.8	(d)	3.19	37.2	(d)	3.20	36.4	(d)	3.05	2.94
17	64.3	(t)	4.88	64.3	(t)	4.8/	63.7	(t)	4.79	4.58
10	171 7		4.09	172.0		4.05	171.0		3.97	4.27
18	1/1./	(s)	-	172.0	(s)	-	1/1.0	(s)	- 12	2 92
19	33.6	(t)	2.81	33.5	(t)	2.86	32.9	(t)	2.43	2.83
20	10 ((1)	2.52	10 (2.49	17.0		1.22	2.03
20	18.0	(t)	3.46	18.0	(t)	3.29	17.8	(t)	3.37	3.48
21	122 5	(-)	2.72	122 5	(-)	2.67	122 7	(-)	2.61	2.71
21	133.3	(s)	-	155.5	(s)	-	155.7	(s)	-	-
22	164.2	(s)	-	164.2	(s)	-	103.3	(s)	-	-
23	104.2	(s)	-	104.3	(s)	-	104.1	(s)	-	-
24	130.3	(S) (d)	- 5 66	136.3	(S) (d)	- 5.62	137.3	(S) (d)	5.60	- 5 0 1
23	90.0	(d)	J.00 7.86	90.7	(d)	J.05	90.3	(b) (b)	5.02	J.01 7.80
20	72.0	(u)	7.80	130.8	(u) (t)	/.04	133.0	(u)	/./1	1.09
27	12.0	(I) (4)	4.19	12.1	(l) (d)	4.19	/1.0	(l) (d)	4.09	4.24
20	72.4	(d)	4.31	72.2	(d)	4.49	05.0	(b) (b)	4.20	5.64
29	72.4	(a)	5.50	12.2	(u)	5.42	12.3	(u)	5.20	5.52
$2-OCH_3$	59.1	(q)	3.35	57.9	(q)	3.24	57.2	(q)	3.18	3.38
3-OCH ₃	60.3	(q)	3.43	-		-	-		-	3.41
10-CH ₃	-		-	16.0	(q)	0.97	15.6	(q)	0.85	-
11-OCOCH₃	-		-	-		-	-		-	2.03
14-CH ₃	15.0	(q)	1.68	15.1	(q)	1.72	14.7	(q)	1.64	1.55
28-0C0CH	_		_	_		_	_		_	2 15

Table 1 ¹H- and ¹³C-NMR Spectral Data of **1** and **2**, and ¹H-NMR Spectral Data of **3**

1 and 2 were measured in $CDCl_3$ at 600 MHz (¹H) and 150 MHz (¹³C).

3 was measured in CDCl₃ at 400 MHz (1 H).

Ref. 5 was measured in DMSO-d 6.

six-membered ring consisting of the C-7 to C-12 chain was proved by correlations between H-8/C-10, H-10/C-8, H-10/C-12 and H-12/C-8. The direct linkages between C-12 to C-13, C-4 to C-13 and C-4 to C-3 were indicated by correlations of H-11 to C-13, H-5 to C-13, and H-3 to C-4, 5 and 13, respectively. An ester bond between C-29 and C-1 was deduced by correlation of H-29 to C-1 as well as from the chemical shift values of C-29 ($\delta_{\rm C}$ 72.4) and H-29 ($\delta_{\rm H}$ 5.36). Additional HMBC experiments also proved the partial

Figure 1 Connection of partial structure of 1

structure of C-1~C-3. The presence of 2- and 3-OCH₃ in **1** was verified by observation of HMBC crosspeaks between H-2/C-2-OCH, H-2-OCH/C-2, H-3/C-3-OCH and H-3-OCH/C-3, respectively. Substitution of the free hydroxyl groups at C-11 and C-28 was deduced from the lower-field shifts of the respective ¹H signals due to their acetylation. From the molecular formula and the degree of unsaturation of **1**, remaining two oxygen-baring carbons (C-13 and C-19) seemed to form ether ring, although the ether bond linkage between C-9 and C-13 in **1** could not be verified by its NMR spectral analyses. Therefore we present the skeletal structure of lustromycin (**1**) as shown in Figure 2 based on the spectral analogies with those of luminamicin (**2**).

Lustromycin (1) is related to a class of 10-membered macrolide antibiotics including nodusmicin, ⁷ nargenicin, ⁸ and luminamicin (coloradocin) (Figure 2).

Figure 2 Structures of lustromycin, luminamicin, nodusmicin, and nargenicin

Lustromycin (1) could be a new lead compound for the medication to compete with vancomycin which is used clinically in pseudomembranous colitis therapy.

Further efforts to determine its stereochemistry and synthetic studies are in progress.

REFERENCES AND NOTES

- S. Omura, Y. Iwai, A. Nakagawa, R. Iwata, Y. Takahashi, H. Shimizu, and H. Tanaka, J. Antibiot., 1983, 36, 109.
- S. Omura, N. Imamura, R. Oiwa, H. Kuga, R. Iwata, R. Masuma, and Y. Iwai, *J. Antibiot.*, 1986, **39**, 1407.
- 3. H. Tomoda, R. Iwata, Y. Takahashi, Y. Iwai, R. Oiwa, and S. Omura, J. Antibiot., 1986, **39**, 1205.
- 4. S. Omura, R. Iwata, Y. Iwai, S. Taga, Y. Tanaka, and H. Tomoda, J. Antibiot., 1985, 38, 1322.
- R. R. Rasmussen, M. H. Scherr, D. N. Whittern, A. M. Buko, and J. B. McAlpine, *J. Antibiot.*, 1987, 40, 1383.
- 6. The ¹H- and ¹³C-NMR spectra of **1** and **2** were recorded on a Varian INOVA600 system in CDCl₃. Their signals were assigned with the aid of ¹H-¹H correlation spectroscopy (¹H-¹H COSY), distortionless enhancement by polarization transfer (DEPT), heteronuclear multiple quantum coherencetransfer (HMQC), and heteronuclear multiple bond connectivity (HMBC) experiments.
- 7. H. A. Whaley, C. G. Chidester, S. A. Mizsak, and R. J. Wnuk, *Tetrahedron Lett.*, 1980, 21, 3659.
- 8. W. D. Celmer, G. N. Chmurny, C. E. Moppett, R. S. Ware, P. C. Watts, and E. B. Whipple, *J. Am. Chem. Soc.*, 1980, **102**, 4203.