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A GENERAL ROUTE TO BRIDGED AZABICYCLIC
COMPOUNDS USING RADICAL TRANSLOCATION/
CYCLIZATION REACTIONS†

Tatsunori Sato and Masazumi Ikeda*
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Abstract - This review summarizes a general route to bridged azabicyclic

compounds using tributyltin hydride-mediated radical translocation/cyclization

reactions.

Introduction

α-Acylamino radicals (RCONR' CH2. ) have been widely used for the syntheses of a variety of the

nitrogen-containing heterocycles.1-3  In general these radicals can be generated either by direct abstraction

of X from acylamino derivatives functionalized at the α-position (RCONR' CH2X)2 or by radical

translocation reaction of aryl radicals generated from the N,N-disubstituted o-halobenzamides (1)3 and the

related compounds.4-6  In the latter reaction the initially formed aryl radicals (2) undergo rapid 1,5-

hydrogen transfer reactions to form the α-acylamino radicals (3)3 as shown in Scheme 1.  Aryl radicals

(2) are very reactive and their solution lifetimes are estimated to be ca.  10-5 sec,7 while the interconversion 

of rotamers of the amides in solution is on the order of 10-1 to 10-2 sec.8  Because these figures are well 

separated, the aryl radicals (2a) and (2b) cannot interconvert during their lifetime.3b Therefore, the 1,5-

hydrogen-transfer reactions of the unsymmetrical disubstituted amides will depend on the rotamer 

population of the radical precursors (1a) and (1b).3a,b  
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The reactions of the α-acylamino radicals (3) derived from the o-halobenzamides (1) include (i) a simple

reduction by tributyltin hydride (Bu3SnH) (ex. 1),3a,b (ii) oxidation to an acyliminium ion which

produces a net N-dealkylation product after workup (ex. 1),3a,b (iii) cyclization onto the phenyl ring of the

benzoyl group followed by aromatization (ex. 1),3a,b (iv) cyclization to an alkenyl double bond on the

nitrogen substituents (ex. 2),3a,b (v) cyclization to an alkenyl double bond on the phenyl ring of the

benzoyl group (ex. 3),3a,b and (vi) intermolecular addition to an alkene (ex. 4).3c  Some of the typical

examples are illustrated in Scheme 2.
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Because the bridged azabicyclic rings are widely found as the basic structural unit in the biologically active

alkaloids such as epibatidine, tropane alkaloids (i.e. ,  cocaine, atropine, and scopolamine), euphococcinine,

adaline, and anatoxin-a, a variety of the synthetic methods for such ring systems have been developed.

This review summarizes a new general synthetic route to these bridged azabicyclic compounds using

Bu3SnH-mediated radical translocation/cyclization reactions (Scheme 3).
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1. Synthesis of 7 -Azabicyclo[2.2.1]heptanes
Treatment of the 2-(prop-2-enyl)pyrrolidine-2-carboxylate (4a) with Bu3SnH in the presence of a catalytic

amount of AIBN in boiling toluene gave the 7-azabicyclo[2.2.1]heptane (5a) (a 5-exo cyclization product)

[42% yield as a diastereomeric mixture (66:34)] and the 8-azabicyclo[3.2.1]octane (6a) (a 6-endo

cyclization product) (30%), together with the reduction product (7a) (12%).9, 10

A mechanistic rationalization for the formation of 5a and 6a would involve a 1,5-hydrogen transfer of the

aryl radical (8) to form the α-acylamino radical (9). This step is then followed by either a 5-exo-trig or 6-

endo-trig cyclization, leading to 5a  and 6a, respectively (Scheme 4).
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In this reaction, the presence of the substituent at the 2-position of the pyrrolidine ring is important. The 2- 

formyl (4b) and 2-hydroxymethyl derivatives (4c) gave the corresponding azabicyclic compounds (5b,c) 

and (6b,c), while the 2-unsubstituted congener (4d) afforded the reduction product (7d) as the major 

product (81%) and the 8-azabicyclo[3.2.1]octane (6d) as the minor product (17%) (Scheme 5). 
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One possible explanation for the effect of the 2-substituent would involve a higher population of the

reacting conformer in the 2-substituted derivatives.  In order for the cyclization to take place, the alkenyl

double bond and the radical center must be first brought together.  The radicals derived from the 2-

substituted derivatives (4a-c) can take the conformation required for the cyclization more readily than the



radical derived from the 2-unsubstituted derivative (4d).  This is because the reacting conformer A derived

from 4a-c is almost energetically equivalent to the conformer B  (although it depends on the sizes of the

substituent at the 2-position), whereas the conformation of the reacting conformer C derived from 4d is

less stable than that of D (Figure 1). An alternative explanation is based on angle compression at the 2-

position caused by the 2-substituent (geminal dialkyl effect11). This effect may lead to a decrease of the

angle θA (θA<θB),  which causes the prop-2-enyl group to be moved closer to the radical center.  Probably

both factors are responsible for the increase in rate of the cyclization in the 2-substituted derivatives.10
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The main disadvantage of this reaction is the lack of the regio- and stereoselectivities.  This problem was

overcome by using an alkynyl group as the radical acceptor instead of the alkenyl group.  Treatment of 2-

[3-(trimethylsilyl)prop-2-ynyl]pyrrolidine (10) gave the 7-azabicyclo[2.2.1]heptane (11) (a 5-exo

cyclization product) in a 78% combined yield as a diastereomeric mixture along with the reduction product

(12) (18% yield).  The compound (11) was transformed into the ketone (14) by treatment with p-

toluenesulfonic acid in acetonitrile followed by oxidation of the resulting methylene derivative (13) with
OsO4 and NaIO4 (Scheme 6).12  The exclusive formation of the exo cyclization product (11) may reflect

the closeness between the radical center formed at the 5-position of the pyrrolidine ring and the internal

position of the alkynic bond.  
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This method was then applied to the synthesis of the 7-azabicyclo[2.2.1]heptan-2-one (15) ,  a key

intermediate in the total synthesis of (±)-epibatidine (16),13 which is the first alkaloid containing the 7-

azabicyclo[2.2.1]heptane ring system.  This is illustrated in Scheme 7.12    

N
MeO2C

N
OHC

N

N

O

N NCOPh

O

N

Cl i) 5% HCl-dioxane
ii) (Boc)2O/Et3N

13

COPh

ether

Wilkinson's  catalyst

OsO4, NaIO4
THF-H2O
  (64%)

Boc

DIBAL-H

COPh

H

(±)-epibatidine ( 16 )

xylene, reflux

(54%)

known

15

   (49% from  13)

Scheme 7

COPh

2. Synthesis of 8 -Azabicyclo[3.2.1]octanes

The synthesis of the 8-azabicyclo[3.2.1]octane (nortropane ring) system was achieved by two routes. One 

involves the cyclization of the piperidine derivatives, and the other includes the cyclization of the

pyrrolidine derivative.  
Thus, the 2-(prop-2-enyl)piperidine-2-carboxylate (17a),  upon treatment with Bu3SnH/AIBN in boiling

toluene, gave regioselectively the 8-azabicyclo[3.2.1]octane (18a) (a 5-exo cyclization product) in

quantitative yield as a diastereomeric mixture in a ratio of 66:34.  In contrast to the 2-unsubstituted

pyrrolidine (4d),  the 2-(prop-2-enyl)piperidine congener (17b) afforded the 8-azabicyclo[3.2.1]octane

(18b) (75% yield as a diastereomeric mixture in a ratio of 63:37) as the major product.  The other products 

were the isoindolone (19) (10%) and the simple reduction product (20) (5%). The formation of 19 from 

17b may proceed via the radical intermediate (21) which cyclizes to form the radical intermediate (22).  

This radical then loses hydrogen atom to give 1 9  (Scheme 8).14

The difference in behavior between the piperidine (17b) and the pyrrolidine (4d) may be rationalized by

considering the preferred conformations of the radical intermediates (Figures 1 and 2).  The prop-2-enyl

group in the radical derived from 17b may occupy an axial  position [see the conformer (E)] in order to

minimize allyic 1,3-strain (A1,3-strain) with the C=N double bond in the amide.15  This causes the 2-

position of the prop-2-enyl group to be brought into the correct position to react in the 5-exo-trig manner.

The same argument may be applied to the pyrrolidine case, but the 2-substituent adopts a quasi-axial

position, so that the distance between either the 2- or 3-position of the prop-2-enyl group and the radical

center becomes longer than in the piperidine case. Consequently the reduction competes favorably with the 

cyclization (since the 3-position of the two reactive sites is relatively closer to the radical center, the

observed 6-endo cyclization is favored over the 5-exo cyclization ).
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The product distribution of 18b (75%) and 19  (10%) probably reflects the population of two conformers

G and H of 17b,  which generate the α-acylamino radicals at the 6- (leading to 18b) and 2-position of the

piperidine ring (leading to 19),  respectively, through the corresponding short-lived aryl radicals.  The

conformer G is favored over the conformer H because the steric repulsion between the bulky o-

bromophenyl and 2-(prop-2-enyl) groups may occur in the latter,  in spite of the fact that the side chain at

the 2-position mainly occupies an axial position in order to minimize A1,3-strain with the N=C double

bond in the amide.
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Since the translocation/cyclization reactions were found to proceed cleanly in the 2-unsubstituted piperidine  

(17b), the cyclization of the 2-[3-(trimethylsilyl)prop-2-ynyl]piperidine (23) was examined. Treatment of 

23  with Bu3SnH/AIBN in boiling toluene gave the 8-azabicyclo[3.2.1]octane (24) (75%) as a  

diastereomeric mixture along with the tricyclic compound (25) (18%).  The compound (24) was

transformed into the ketone (2 6).14
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On the other hand, the 2-[4-(trimethylsilyl)but-3-ynyl]pyrrolidine (27) gave regioselectively the 8-

azabicyclo[3.2.1]octane (28) in 83% combined yield as a diastereomeric mixture, which was again

transformed into the ketone (2 9).12
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3. Synthesis of 9 -Azabicyclo[4.2.1]nonanes

The 2-[5-(trimethylsilyl)pent-4-ynyl]pyrrolidine (30),  upon treatment with Bu3SnH/AIBN in boiling

toluene, gave an inseparable mixture of the 9-azabicyclo[4.2.1]nonane (31) (as a diastereomeric mixture)

and the reduction product (32) in 86% total yield and in a ratio of 48:52 (the ratio was determined by

HPLC).  The yield of 31  was estimated to be approximately 40%.  The mixture was treated with p-

toluenesulfonic acid followed by oxidation with OsO4 and NaIO4 to give the ketone (33) in 17% overall

yield.12
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4. Synthesis of 9 -Azabicyclo[3.3.1]nonanes

The 2-[4-(trimethylsilyl)but-3-ynyl]piperidines (34a-c),  upon treatment with Bu3SnH/AIBN in boiling

toluene, gave the 9-azabicyclo[3.3.1]nonanes (35a-c) in high yields, which were transformed into the

corresponding ketones (36a-c).16  In the case of 34b the isoindolone (37)(23%) was also obtained. The 

compound (36c) was subjected to a 1,2-transposition reaction of the carbonyl group to give 9-benzoyl-1-

methyl-9-azabicyclo[3.3.1]nonan-3-one (38),16 a potential precursor for the synthesis of (±)-

euphococcinine (3 9) (Scheme 12).17
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5. Synthesis of 2 -Azabicyclo[3.2.1]octanes and 2-Azabicyclo[3.3.1]nonanes

Treatment of the 4-[3-(trimethylsilyl)prop-2-ynyl]piperidine (40) with Bu3SnH/AIBN in boiling toluene

gave the isomeric 2-azabicyclo[3.2.1]octanes (41a) (the less polar isomer) and (41b) (the polar one) in 34 

and 51% yields, respectively, along with a trace amount of the reduction product (42).  Both the

compounds (41a) and (41b) were transformed into the ketone (4 4) via the methylene derivative (4 3).18

Cyclization of 45 proceeded more slowly to give the 2-azabicyclo[3.3.1]nonane (47) in 20% yield as a

diastereomeric mixture, which was transformed into the methylene derivative (48).   In this case, the

reduction product (46) was obtained as a major product in 75% yield.  The low yield of 47  may be



rationalized by considering the preferred conformation of the α-acylamino radical intermediates (I) and (J)

derived from the 4-alkynyl-1-(o-iodobenzoyl)piperidines.  The 4-alkynyl group adopts a more stable

equatorial position, so that for the cyclization to take place the conformation of the 4-substituent must invert 

from the equatorial to the axial position (Figure 3).  The distance of the 3-position of the 4-(but-3-ynyl) 

group and the radical center is still larger than that in the case of the 4-(prop-2-ynyl) group. Consequently, 

the reduction competes favorably with the cyclization.   
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6.  Synthes is  of Tetrahydro-5H-benzocyclohepten-5, 8-imine and Hexahydrobenzocyclo-

octen-5,9-imine
Treatment of the 1-[3-(trimethylsilyl)prop-2-ynyl]tetrahydroisoquinoline (49a) with Bu3SnH/AIBN in

boiling toluene gave the tetrahydro-5H-benzocyclohepten-5,8-imine (50a) in 87% combined yield as a

diastereomeric mixture.  A similar treatment of the 1-[4-(trimethylsilyl)but-3-ynyl] congener (49b) with
Bu3SnH/AIBN yielded exclusively the hexahydrobenzocycloocten-5,9-imine (50b) in 65% yield as a



diastereomeric mixture.  Both the compounds (50a,b) were converted into the corresponding ketones

(51a,b).19  
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Epilogue
The radical translocation and cyclization reactions of 2-alkynylpyrrolidines and 2- and 4-alkynylpiperidines

provide a new general route to a variety of azabicyclic compounds.  We hope to extend these reactions to

the synthesis of the optically active compounds.  For comparison, the behavior of the azetidine congener

(52) was also investigated.14  When 52  was treated with Bu3SnH/AIBN in boiling toluene, only the

reduction product (53) was obtained in 63% yield.  A deuterium labeling experiment indicated that both the 

1,5-hydrogen transfer and cyclization steps were retarded.  Examination of  Dreiding models reveals that 

the distance between the radical center formed on the phenyl ring and 4-hydrogen atom in 54  is slightly 

longer than that in the pyrrolidine case and the radical center in 55   formed after the 1,5-hydrogen 

transfer is too far away from the alkenic double bond to permit the cyclization.
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