USEFUL SYNTHESIS OF VARIOUS THIAZOLE AND POLY-THIAZOLYL DERIVATIVES FROM THIOCARBOXAMIDE AND β-BROMOACYL COMPOUND

Atsushi Nagasaki, Yasuhito Adachi, Yasuchika Yonezawa, and Chung-gi Shin*

Laboratory of Organic Chemistry, Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan

Abstract-Useful synthesis and thiazole ring formations of the methyl β -bromo- α -oxoalkanoate and β -bromoacyl group containing-5-methylthiazole-4carboxylate, which are very promising compounds for the synthesis of various polythiazole derivatives, were accomplished.

Previously,¹ we have reported that the bromination of alkyl α -(*N*-acyl)amino- α -alkenoate with *N*-bromosuccinimide (NBS) gave the corresponding β -bromo- α -alkenoate derivative. Recently, a similar synthesis of methyl α -(*N*-Boc)amino- β -bromo- α -alkenoate (2) (Boc=*t*-butoxycarbonyl) from methyl α -(N-Boc)amino- α -alkenoate (1) and the conversion to methyl β -bromo- α -oxoalkanoate (3) by the *N*-deprotection and then hydrolysis of **2** have been also briefly reported.² The obtained **3** was found to be a very promising substrate for the synthesis of various 2,5-disubstituted thiazoles. To synthesize the thiazolylthiazole segment of an important building block of the macrocyclic antibiotic, GE 2270 A,³ thiazolation of **3** (R=Me and CH₂OMe) with L- α -amino acid thioamides (**5**; R¹=CH₂CONHMe and CHMe₂) gave two kinds of 2-[1-(N-Boc)aminoalkyl]-5-substituted thiazole-4-carboxylates (6), which were coupled and further modified to give the expected segment (Figure 1). Furthermore, similar antibiotics, such as micrococcins P, P₁,⁴⁻⁶ cyclothiazomycin,⁷ and so on, are constituted of various thiazole and polythiazole moieties as the important structure.

Figure 1

So far, the synthesis of **3** by brominations of ethyl α -oxoalkanoate with Br₂^{8,9} and ethyl α -hydroxyalkanoate with NBS^{10,11} has been reported. By these methods, however, the synthesis of **3** possessing a complex functional group is likely to be restricted. To generalize our method, we carried out the bromination of α -dehydroamino acids (**1: a**; R=Me, **b**; R=*i*-Pr, **c**; R=C₆H₅), derived by reaction of the corresponding *N*-carboxy- α -dehydroamino acid anhydrides (Δ NCA) with (Boc)₂O in MeOH,¹² with NBS, which proceeded smoothly to give methyl β -bromo- α -alkenoate (**2**) almost quantitatively. Subsequently, simultaneous *N*-deprotection and hydrolysis of the α -(*N*-Boc)amino group of **2** by using 70% trifluoroacetic acid (TFA) were tried successfully to give various **3** in 64% yield, as shown in Scheme 1. As a result, wide applications to not only **1** but also 2-(α -enamino)alkylthiazole compounds synthesized later were advanced to give various β -bromoacyl compounds, which were further thiazolated with appropriate thiocarboxamides.

 \mathbf{a} ; R=Me, \mathbf{b} ; R=*i*-Pr, \mathbf{c} ; R=Ph

Scheme 1.

On the other hand, L- and D- α -amino acid thioamides (5: **a**; R¹=Me, **b**; R¹=*i*-Pr, **c**; R¹=*i*-Bu, **d**; R¹=CH₂Ph)

 $\begin{array}{l} \textbf{3}: \textbf{a} ; R{=}Me, \ \textbf{b} ; R{=}i{-}Pr, \ \textbf{c} ; R{=}Ph \\ \textbf{5}: \textbf{a} ; R^{1}{=}Me, \ \textbf{b} ; R^{1}{=}i{-}Pr, \ \textbf{c} ; R^{1}{=}i{-}Bu, \ \textbf{d} ; R^{1}{=}CH_{2}Ph \end{array}$

Scheme 2.

as another substrate were prepared by the method reported previously.^{13,14} Subsequent thiazolation of **3a-c** with **5a-d** by using KHCO₃ and TFA in pyridine and then 28% aq. NH₃ was carried out to give the expected thiazole derivatives (**6a-l: a;** $R=R^1=Me$, **b;** R=Me, $R^1=i-Pr$, **c;** R=Me, $R^1=i-Bu$, **d;** R=Me, $R^1=CH_2Ph$, **e;**

R=*i*-Pr, R¹=Me, **f**; R=R¹=*i*-Pr, **g**; R=*i*-Pr, R¹=*i*-Bu, **h**; R=*i*-Pr, R¹=CH₂Ph, **i**; R=Ph, R¹=Me, **j**; R=Ph, R¹=*i*-Bu, **k**; R=Ph, R¹=*i*-Bu, **l**; R=Ph, R¹=CH₂Ph) by the Hantzsch method,¹⁵ as shown in Scheme 2. Furthermore, similarly to the case of **5**, the *N*-Boc-*N*,*O*-isopropylidene (Isop)-L-Thr-(S)NH₂ (**9**) was also obtained from the protected L-Thr-OH (**7**) *via* the corresponding carboxamide (**8**). Subsequent thiazolation of L-**9** with **3a** by using KHCO₃ in 1,2-dimethoxyethane (DME) and then trifluoroacetic anhydride (TFAA) gave methyl (*R*)-2-[3-(*N*-Boc)-2,2,5-trimethyl(oxazolidin-4-yl)]-5-methylthiazole-4-carboxylate (**10**) in 93% yield, as shown in Scheme 3.

Scheme 3.

In the Hantzsch method, both the thioamide and β -bromoacyl functional groups were found to be essential. If two compounds have the two groups respectively, the synthesis of any polythiazole derivative is thought to be possible. To substantiate this idea, the promising starting compound (10), which is able to transform to two functional groups, the thioamide and β -bromo- α -oxo groups, was submitted to the polythiazole First, N,O-deprotection of the Isop group of 10, derived from 3a and 9, by using a formation as follows. mixture of CHCl₃ and TFA (96 : 4 v/v), followed by dehydration of the formed secondary alcohol derivative (11) with methanesulfonyl chloride (Ms-Cl) in the Et₃N presence of and then 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) gave the corresponding 2-(N-Boc)aminoalkenyl derivative (12) in a 1 : 1 mixture of E- and Z-isomers. Furthermore, usual bromination of 12 with NBS gave the corresponding geometric mixture of β -bromoalkenyl derivative (13). Treatment of 13 with TFA in CHCl₃ was performed to give the expected 2-bromopropanoyl derivative (15) via the corresponding β -bromoininoalkyl derivative (14) as an unstable intermediate. On the other hand, similarly to the case of 4, amidation of 10 with ClCOOEt in the presence of Et₃N and then 28% aq. NH₃ by the usual mixed acid anhydride (MA) method gave the corresponding carboxamide derivative (16), the amide of which was thioamidated with Lawesson's reagent to give the corresponding 4-thiocarboxamide derivative (17), as shown in Scheme 4.

Scheme 4. Reactions and conditions: i) TFA-CHCl₃ (4:96 v/v), rt, 2 h, ii) a) MsCl, Et₃N, CHCl₃, 0 $^{\circ}$ C, 1 h, b) DBU, CHCl₃, rt, 6 h, iii) a) NBS, CHCl₃, rt, 30 min, b) Et₃N, CHCl₃, rt, 2 h, iv), v) TFA, CHCl₃, H₂O, rt, 2 h, vi) a) 1 M LiOH, H₂O-dioxane (1:1 v/v), 0 $^{\circ}$ C, 30 min, rt, 6 h, b) ClCOOEt, Et₃N, THF, 0 $^{\circ}$ C, 30 min, c), 28% aq. NH₃, THF, 0 $^{\circ}$ C, 10 min, vii) Lawesson's reagent, DME, rt, overnight.

Secondly, to synthesize various 2-substituent bis(5-methyl)thiazole-4-carboxylate derivatives (**18-25**), quite similar reactions to the above-mentioned were worked up consecutively in each step. That is, thiazolation of **15** with **9** gave the corresponding *N*,*O*-diprotected bis(5-methyl)thiazole derivative (**18**), which was further subjected to two directional reactions. Successive transformations of **18** to 2-(1-amino-2-hydroxy)-propyl- (**19**), 2-(1-amino)-1-propenyl- (**20**), 2-(1-amino-2-bromo)-1-propenyl- (**21**), and final 2-(2-bromo-propanoyl)bis(5-methyl)thiazole-4-carboxylate (**23**) *via* the corresponding 2-bromo-1-iminopropyl derivative (**22**) were tried successfully. On the other hand, another bis(5-methyl)thiazolylthiocarboxamide (**25**) was also readily synthesized from **18** *via* the corresponding carboxamide derivative (**24**) by successive ester hydrolysis and by the MA method and then by treatment with Lawesson's reagent, as shown in Scheme 5.

Thirdly, in the case of the synthesis of a tristhiazole derivative (26), the desired derivative could be synthesized by the appropriate combination among the compounds obtained above. That is, thiazolations of 9 with 23, similarly 25 with 3b, and 17 with 15, respectively, gave a kind of the corresponding tris(5-methyl)thiazole derivative (26), as shown in Scheme 6.

As a result, this synthetic method is applicable to the synthesis of a longer array of thiazole rings, for

Scheme 5. Reactions and conditions: i) a) **9**, KHCO₃, DME, 0 °C, 30 min, rt, overnight, b) TFAA, pyridine, 0 °C, 1 h, ii) TFA-CHCl₃ (4:96 v/v), rt, 2 h, iii) a) MsCl, Et₃N, CHCl₃, 0 °C, 2 h, b) DBU, CHCl₃, rt, 6 h, iv) a) NBS, CHCl₃, rt, 30 min, b) Et₃N, CHCl₃, rt, 3 h, v), vi) TFA, CHCl₃, H₂O, rt, 1 h, vii) a) 1 M LiOH, H₂O-dioxane (1:1 v/v), 0 °C, 30 min, rt, overnight, b) ClCOOEt, Et₃N, THF, 0 °C, 30 min, c), 28% aq. NH₃, THF, 0 °C, 10 min, viii) Lawesson's reagent, DME, rt, overnight.

Scheme 6. Reactions and conditions: i) a) KHCO₃, DME, 0 °C, 30 min, 50 °C, overnight, b) TFAA, pyridine, 0 °C, 1 h, ii) KHCO₃, DME, reflux, overnight.

example, tetrakis-, pentakis-, and so on. In fact, further thiazolation between 23 and 25 was also carried

out to give the expected pentakisthiazole derivative as entirely insoluble crystals in good yield.

The structures of all of the new compounds, thus obtained, were determined spectroscopically (IR and NMR spectrum) and gave satisfactory results in specific rotations and elemental analyses. In particular, in the IR spectra of 3, the disappearance of the carbon-carbon double bond in the 1650-1660 cm⁻¹ of 2 and the appearance of the characteristic strong absorption band in the 1740-1745 cm⁻¹ region as a shoulder due to the oxo cabonyl group showed clearly the formation of 3. Furthermore, in the ¹H NMR spectra, the signals of the β -protons of **3** appeared in the δ =4.85-5.16 ppm as a quartet, doublet, and singlet of one proton respectively. On the other hand, in the 13 C NMR spectra, the typical 13 C signals of **3** appeared in the δ =60.44-161.12, 183.60-185.71 ppm, and 42.24-56.49 ppm as the C₁, C₂, and C₃ carbons, respectively. On the other hand, in the case of mono-, bis-, and tristhiazole derivatives, in the IR spectra, a strong absorption bands in the 1699-1717 cm^{-1} and 698-1722 cm^{-1} regions of the carbonyl group of the methyl ester, amide, and thioamide, appeared. Furthermore, in the ¹H NMR spectra, the signals of the ring methyl and two methyl protons appeared in the δ =2.73-2.96 ppm as one singlet and δ =2.78-3.01 ppm as two singlets. In the case of 26, the signals of the three ring methyl protons appeared in the δ =2.81, 2.87, and 2.93 ppm as three singlets. Furthermore, since it is often said that the 2-(1-amino)alkyl moiety attached to the thiazole ring may racemize, it was also studied to determine whether the racemization takes place or not during the synthesis and reaction of various kinds of (S)- and (R)-6. The compound (6) thus obtained was purified on reversed-phase high-pressure liquid chromatography (HPLC) chiral column using a mixture of hexane and isopropyl alcohol (9:1 v/v) as the eluent. As a result, it was found the racemization did not occur at all. In particular, it was found that the (S)- and (R)-enantiomeric excess (ee %) of 6 attained almost 100%.

In conclusion, it is worth noting that the α -*N*-acyl- α -enamino compounds involving α -dehydroamino acids were readily converted by treatment with NBS and by simultaneous *N*-deprotection and hydrolysis to the corresponding β -bromo- α -oxo compounds, which are useful to synthesize various thiazole derivatives.

EXPERIMENTAL

The melting points were measured using a Yamato (Model Mp-21) micromelting point apparatus, and are uncorrected. The IR spectra were recorded using a Hitachi EPI-G2 spectrophotometer in KBr. The ¹H NMR and ¹³C NMR spectra were measured with JEOL EX 90, FX 200, and JNE 500 spectrometer in CDCl₃, DMSO- d_6 , or CD₃OD solution with tetramethylsilane used as the internal standard. Specific rotations were measured in 0.5 dm tube using a JASCO DIP-4 polarimeter in MeOH or H₂O. HPLC analysis was done on the following column using a mixture of hexane and isopropyl alcohol (9 : 1 v/v) with a flow rate of 2.5 ml min⁻¹ by detecting UV (254 nm) absorption: System: JASCO HSS-90. Column: CHIRALCEL OD (4.6 ϕ x 25 cm).

Starting Materials. Methyl 3-Bromo-2-alkenoate (2a-2c). The compound (2) was prepared by the method reported earlier.¹

Methyl 3-Bromo-2-oxoalkanoate (3a-3c). General Procedure: A solution of 2a-c (3.4 mmol) and TFA (20 mL, 260 mmol) in CHCl₃ (20 mL) was stirred at rt for 30 min. The reaction mixture was added to water (20 mL) and the resulting solution was neutralized with 9% aqueous NaHCO₃ solution (20 mL). The organic layer was dried over anhydrous Na₂SO₄ and then evaporated under reduced pressure below 30 $^{\circ}$ C. The residual syrup was distilled *in vacuo* to give **3a-c** as a colorless or yellowish oil.

Methyl 3-Bromo-2-oxobutanoate (**3a**). Yield 62%. bp 38-39 °C/4 mmHg. IR :2956, 1751, 1731 cm⁻¹. ¹H NMR (CDCl₃): δ 1.82 (d, 3H, CHC*H*₃, *J*=6.8 Hz), 3.94 (s, 3H, OCH₃), 5.16 (q, 1H, C*H*CH₃, *J*=6.8 Hz). ¹³C NMR: δ 18.42, 42.24, 53.34, 160.97, 185.71. *Anal*. Calcd for C₅H₇O₃Br: C, 30.79; H, 3.62. Found: C, 30.66; H, 3.92.

Methyl 3-Bromo-4-methyl-2-oxopentanoate (3b). Yield 64%. bp 50-51 °C/5 mmHg. IR: 2968, 1758, 1737 cm⁻¹. ¹H NMR: δ 1.05 and 1.14 (each d, 3H x 2, CH(CH₃)₂, *J*=6.5 Hz), 2.28-2.44 (m, 1H, CH(CH₃)₂), 3.92 (s, 3H, OCH₃), 4.85 (d, 1H, CHCH(CH₃)₂, *J*=8.0 Hz). ¹³C NMR: δ 20.10, 20.21, 29.83, 53.31, 56.49, 161.12, 185.48. *Anal.* Calcd for C₇H₁₁O₃Br: C, 37.69, H, 4.97. Found: C, 37.48, H, 5.14.

Methyl 3-Bromo-2-oxo-3-phenylpropanoate (3c). Yield 65%. bp 109-110 °C/4 mmHg. IR: 2923, 1735 cm⁻¹. ¹H NMR: δ 3.88 (s, 3H, OCH₃), 6.21 (s, 1H, CH), 7.36-7.47 (m, 5H, Ph). ¹³C NMR: δ 49.54, 53.51, 129.02, 129.61, 129.69, 132.98, 160.44, 183.60. *Anal.* Calcd for C₁₀H₉O₃Br: C, 46.72; H, 3.53. Found: C, 47.07; H, 3.78.

N-Boc- α -Amino Acid Thioamides (5a-5d). The thioamides (5) were prepared by the method reported by Okumura *et al.*,¹³ and Brain *et al.*¹²

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)aminoalkyl]-5-methylthiazole-4-carboxylates (6a-l). General **Procedure:** To a solution of thioamide (5: 0.86 mmol) and KHCO₃ (690 mg, 6.88 mmol) in DME (20 mL) under cooling was added, with stirring, **3a-c** (2.58 mmol). After stirring 30 min and then overnight at rt, the reaction solution was concentrated *in vacuo*. Th residual brown syrup was dissolved in CHCl₃ (20 mL), washed with water (10 mL x 2) and then dried over anhydrous Na₂SO₄. Concentration *in vacuo* gave a brown syrup, which was dissolved again in DME (20 mL) and then stirred with TFAA (361 mg, 1.72 mmol) and pyridine (300 mg, 3.78 mmol) under cooling for 30 min. Concentration *in vacuo* gave a brown syrup, which was dissolved in EtOAc(20 mL). The solution was washed with brine (10 mL and, after cooling, was stirred 28% aq. NH₃ (5 mL) for 10 min. The reaction mixture was washed with brine (10 mL x 2) and there of hexane and EtOAc (1 : 1 v/v) to give colorless crystals or a colorless syrup.

Methyl 2-[(S)- and (R)-1-(N-Boc)aminoethyl]-5-methylthiazole-4-carboxylate (6a). mp 80.5-81.5 °C.

(*S*)-**6a**: Yield 98%. $[\alpha]_D^{21}$ –29.2° (*c* 0.98, MeOH). 100% ee. (*R*)-**6a**: Yield 97%. $[\alpha]_D^{23}$ +29.4° (*c* 1.00, MeOH). 100% ee. IR: 3357, 2978, 2941, 1710, 1680, 1522 cm⁻¹. ¹H NMR: δ 1.45 (s, 9H, Boc's *t*-Bu), 1.60 (d, 3H, CHC*H*₃, *J*=6.9 Hz), 2.75 (s, 3H, Thiazole's CH₃), 3.93 (s, 3H, OCH₃), 4.50-5.06 (m, 1H, NHC*H*), 5.22-5.39 (m, 1H, NH). *Anal.* Calcd for C₁₃H₂₀N₂O₄S: C, 51.98; H, 6.71; N, 9.33. Found: C, 52.10; H, 6.36; N, 9.26.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-(2-methyl)propyl]-5-methylthiazole-4-carboxylate (6b). mp 91-92 °C. (*S*)-6b: Yield 95%. $[\alpha]_D^{26}$ –33.8° (*c* 0.72, MeOH). 100% ee. (*R*)-6b: Yield 94%. $[\alpha]_D^{25}$ +33.1° (*c* 0.72, MeOH). 100% ee. IR 3343, 2976, 2960, 2937, 2869, 1713, 1684, 1516 cm⁻¹. ¹H NMR: δ 0.90 (d, 6H, CH(CH₃)₂, *J*=6.9 Hz), 1.45 (s, 9H, Boc's *t*-Bu), 2.36-2.43 (m, 1H, CH(CH₃)₂), 2.73 (s, 3H, Thiazole's CH₃), 3.29 (s, 3H, OCH₃), 4.77-4.82 (m, 1H, CHNH), 5.19-5.21 (m, 1H, NH). *Anal.* Calcd for C₁₅H₂₄N₂O₄S: C, 54.86; H, 7.37; N, 8.58. Found: C, 54.48; H, 7.10; N, 8.62.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-(3-methyl)butyl]-5-methylthiazole-4-carboxylate (6c). mp 98.5-99 °C. (*S*)-6c: Yield 95%. $[\alpha]_D^{24}$ –36.2° (*c* 0.99, MeOH). 100% ee. (*R*)-6c: Yield 95%. $[\alpha]_D^{24}$ +35.2° (*c* 1.00, MeOH). 100% ee. IR 3351, 1953, 2870, 1716, 1689, 1524 cm⁻¹. ¹H NMR: δ 0.96 (d, 6H, CH(CH₃)₂, *J*=6.6 Hz), 1.44 (s, 9H, Boc's *t*-Bu), 1.50-1.94 (m, 3H, CH₂ and CH(CH₃)₂), 2.73 (s, 3H, Thiazole's CH₃), 3.92 (s, 3H, OCH₃), 4.91-5.05 (m, 2H, NHCH and NH). *Anal.* Calcd for C₁₆H₂₆N₂O₄S: C, 56.12; H, 7.65; N, 8.18. Found: C, 56.17; H, 7.99; N, 8.56.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-2-phenylethyl]-5-methylthiazole-4-carboxylate (6d). mp 140-141 °C. (*S*)-6d: Yield 92%. $[\alpha]_D^{24}$ –25.2° (*c* 1.00, CHCl₃). 100% ee. (*R*)-6d: Yield 94%. $[\alpha]_D^{24}$ +24.6° (c 1.00, CHCl₃). 100% ee. IR: 3355, 3062; 3028, 2977, 2931, 1714, 1688, 1521 cm⁻¹. ¹H NMR: δ 1.38 (s, 9H, Boc's *t*-Bu), 2.71 (s, 3H, Thiazole's CH₃), 3.95 (s, 3H, OCH₃), 5.09-5.30 (m, 2H, CHNH and NH), 7.10-7.31 (m, 5H, Ph). *Anal.* Calcd for C₁₉H₂₄N₂O₄S: C, 60.62; H, 6.43; N, 7.44. Found: C, 60.48; H, 6.13; N, 7.52.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-2-ethyl]-5-isopropylthiazole-4-carboxylate (6e). mp 107-108 ^oC. (*S*)-6e: Yield 95%. $[\alpha]_D^{24} - 27.4^{\circ}(c \ 1.00, MeOH)$. 98% ee. (*R*)-6e: Yield 91%. $[\alpha]_D^{24} + 26.4^{\circ}(c \ 1.00, MeOH)$. 100% ee. IR 3347, 2974, 1717, 1512 cm⁻¹. ¹H NMR: δ 1.32 (d, 6H, CH(CH₃)₂, *J*=6.6 Hz), 1.45 (s, 9H, Boc's *t*-Bu), 1.59 (d, 3H, CHCH₃, *J*=6.9 Hz), 3.92 (s, 3H, OCH₃), 4.12 (dq, 1H, CH(CH₃)₂, *J*=6.6, 6.6 Hz), 5.01-5.12 (m, 2H, NHCH and NH). *Anal.* Calcd for C₁₅H₂₄N₂O₄S: C, 54.86; H, 7.37; N, 8.53. Found: C, 54.85; H, 7.01; N, 8.87.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-2-(2-methyl)propyl]-5-isopropylthiazole-4-carboxylate (6f). mp 69-70 °C. (*S*)-6f: Yield 85%. $[\alpha]_D^{26}$ –35.5° (*c* 1.01, MeOH). 100 % ee. (*R*)-6f: Yield 88%. $[\alpha]_D^{25}$ +37.1° (*c* 1.03, MeOH). 100 % ee. IR 3263, 3002, 2966, 2872, 1699, 1537 cm⁻¹. ¹H NMR: δ 0.91 and 0.98 (each d, 6H, CH(CH₃)₂, *J*=6.6 Hz), 1.32 (d, 6H, CH(CH₃)₂, *J*=6.9 Hz), 1.45 (s, 9H, Boc's *t*-Bu), 2.27-2.46 (m, 1H, CH(CH₃)₂), 3.92 (s, 3H, OCH₃), 4.11 (dq, 1H, CH(CH₃)₂, *J*=6.9, 6.9 Hz), 4.73-4.95 (m, 1H, C*H*NH), 5.15-5.29 (m, 1H, NH). *Anal.* Calcd for C₁₇H₂₈N₂O₄S: C, 57.28; H, 7.92; N, 7.86. Found: C, 57.02; H, 7.75; N, 7.58.

Methyl (*R*)-1-(*N*-Boc)amino-2-(3-methyl)butyl]-5-isopropylthiazole-4-carboxylate (6g). Syrup. (*S*)-6g: Yield 95%. $[\alpha]_D^{24}$ -27.6° (*c* 1.00, MeOH). 100% ee. (*R*)-6g: Yield 93%. $[\alpha]_D^{24}$ +26.0° (*c* 1.00, MeOH). 98% ee. IR 3345, 2960, 2870, 1717, 1512 cm⁻¹. ¹H NMR: δ 0.97 (d, 6H, CH₂CH(CH₃)₂, *J*=5.6 Hz), 1.32 (d, 6H, CH(CH₃)₂, *J*=6.9 Hz), 1.44 (s, 9H, Boc's *t*-Bu), 1.60-1.89 (m, 3H, CH₂ and CH₂CH(CH₃)₂, 3.92 (s, 3H, OCH₃), 4.11 (dq, 1H, CH(CH₃)₂, *J*=6.9, 6.9 Hz), 4.90-5.14 (m, 2H, NHCH and NH). Anal. Calcd for C₁₈H₃₀N₂O₄S: C, 58.35; H, 8.16; N, 7.56. Found: 57.98; H, 8.08; N, 7.48

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-2-phenylethyl]-5-isopropylthiazole-4-carboxylate (6h). mp127-128 °C. (*S*)-6h: Yield 88%. $[\alpha]_D^{23}$ –22.2° (*c* 1.00, CHCl₃). 100% ee. (*R*)-6h: Yield 92%. $[\alpha]_D^{25}$ +24.2° (*c* 1.00, CHCl₃). 100% ee. IR 3326, 3024, 2970, 1719, 1690, 1605, 1514 cm⁻¹. ¹H NMR: δ 1.28 and 1.29 (each d, 6H, CH(CH₃)₂, *J*=6.9 Hz), 1.38 (s, 9H, Boc's *t*-Bu), 3.23-3.37 (m, 2H, CH₂), 3.95 (s, 3H, OCH₃), 4.10 (dq, 1H, CH(CH₃)₂, *J*=6.9, 6.9 Hz), 5.10-5.29 (m, 2H, CHNH and NH), 7.10-7.30 (m, 5H, Ph). *Anal.* Calcd for C₂₁H₂₈N₂O₄S: C, 62.35; H, 6.66; N, 7.19. Found: C, 62.12; H, 7.07; N, 6.45.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-2-ethyl]-5-phenylthiazole-4-carboxylate (6i). mp 99-100 °C. (*S*)-6i: Yield 100%. $[\alpha]_D^{24}$ -45.6° (*c* 1.00, MeOH). 100% ee. (*R*)-6i: Yield 100%. $[\alpha]_D^{24}$ +43.4° (*c* 1.00, MeOH). 100% ee. IR 3379, 3340, 3019, 2980, 2938, 1957, 1887, 1723, 1685, 1507 cm⁻¹. ¹H NMR: δ 1.46 (s, 9H, Boc's *t*-Bu), 1.59 (d, 3H, CHC*H*₃, *J*=6.9 Hz), 3.82 (s, 3H, OCH₃), 5.09-5.12 (m, 1H, NHC*H*), 5.13-5.25 (m, 1H, NH), 7.39-7.49 (m, 5H, Ph). *Anal.* Calcd for C₁₈H₂₂N₂O₄S: C, 59.65; H, 6.12; N, 7.73. Found: C, 59.50; H, 5.68; N, 8.02.

Methyl 2-[(*S*)- and (*R*)-1-(*N*-Boc)amino-2-(2-methyl)propyl]-5-phenylthiazole-4-carboxylate (6j). mp 112-113 °C. (*S*)-6j: Yield 97%. $[\alpha]_D^{24}$ –51.6° (*c* 1.00, MeOH). 100% ee. (*R*)-6j: Yield 100%. $[\alpha]_D^{24}$ +50.8° (*c* 1.00, MeOH). 100% ee. IR 3353, 3068, 3007, 2982, 2961, 2871, 2360, 1725, 1685, 1510 cm⁻¹. ¹H NMR: δ 0.95 and 1.03 (each d, 6H, CH(CH₃)₂, *J*=6.6 Hz), 1.46 (s, 9H, Boc's *t*-Bu), 2.44-2.50 (m, 1H, CH(CH₃)₂), 3.81 (s, 3H, OCH₃), 4.87-4.92 (m, 1H, CHNH), 5.24-5.27 (m, 1H, NH), 7.40-7.49 (m, 5H, Ph). Anal. Calcd for C₂₀H₂₆N₂O₄S: C, 61.51; H, 6.71; N, 7.17. Found: C, 61.29; H, 6.81; N, 7.38.

Methyl 2-[(*S*)- and (*R*)-1-(N-Boc)amino-2-(3-methyl)butyl]-5-phenylthiazole-4-carboxylate (6k). mp 124-125 °C. (*S*)-6k: Yield 95%. $[\alpha]_D^{27}$ –56.6° (*c* 1.01, MeOH). 100 ee. (*R*)-6k: Yield 100%. $[\alpha]_D^{27}$ +54.6° (*c* 1.00, MeOH). 100% ee. IR 3362, 3062, 3010, 2979, 2951, 2868, 2362, 1725, 1692, 1523 cm⁻¹. ¹H NMR: δ 1.00 (d, 6H, CH(CH₃)₂, *J*=6.3 Hz), 1.45 (s, 9H, Boc's *t*-Bu), 1.74-2.00 (m, 3H, CH₂ and CH(CH₃)₂), 3.81 (s, 3H, OCH₃), 5.04-5.13 (m, 2H, NHCH and NH), 7.39-7.49 (m, 5H, Ph). Anal. Calcd for C₂₁H₂₈N₂O₄S: C, 62.35; H, 6.98; N, 6.93. Found: C, 62.04; H, 6.66; N, 7.01.

Methyl 2-[(S)- and (R)-1-(N-Boc)amino-2-phenylethyl]-5-phenylthiazole-4-carboxylate (6l). mp

122-123 °C. (*S*)-**61:** Yield 100%. $[\alpha]_D^{27}$ –23.0° (*c* 1.01, MeOH). 100% ee. (*R*)-**61:** Yield 100%. $[\alpha]_D^{27}$ +21.2° (*c* 1.01 MeOH). 100% ee. IR 3327, 3065, 3027, 2976, 2948, 2400, 1723, 1629, 1603, 1522 cm⁻¹. ¹H NMR: δ 1.39 (s, 9H, Boc's *t*-Bu), 3.21-3.41 (m, 2H, CH₂), 3.84 (s, 3H, OCH₃), 5.18-5.27 (m, 2H, CHNH and NH), 7.15-7.45 (m, 10H, 2 x Ph). *Anal.* Calcd for C₂₄H₂₆N₂O₄S: C, 65.73; H, 5.98; N, 6.39. Found: C, 65.44; H, 5.54; N, 6.46.

N-Boc-*N*,*O*-isopropylidene-threoninethioamide (9). A solution of **8** (1.0 g, 3.87 mmol) and Lawesson's reagent (0.86 g, 2.12 mmol) in DME (30 mL) was stirred at 40 °C overnight. After the insoluble substance was filtered off, the filtrate was concentrated *in vacuo* to give a yellowish syrup, which was purified on a silica gel column using a mixture of hexane and EtOAc (1 : 1 v/v) to give crude crystals. Recrystallization from a hexane-EtOAc gave colorless prisms. Yield 83%. mp 108.5-109.5 °C. $[\alpha]_D^{27}$ +9.17° (*c* 0.96, CHCl₃). ¹H NMR: δ 1.45 (s, 9H, Boc's *t*-Bu), 1.47 and 1.49 (each s, 3H x 2, Isop's CH₃ x 2), 1.63 (d, 3H, CHCH₃, *J*=5.4 Hz), 4.12-4.23 (m, 1H, CHCH₃), 4.28 (d, 1H, NCHCH, *J*=8.1 Hz), 7.39 (br s, 1H, NH), 7.54 (br s, 1H, NH). *Anal.* Calcd for C₁₂H₂₂N₂O₃S: C, 52.53; H, 8.08; N, 10.21. Found: C, 52.55; H, 8.12; N, 10.25.

Methyl (15,2*R*)-2-[*N*-Butoxycarbonyl-2,2,5-trimethyl(oxazolidin-4-yl)]-5-methylthiazole-4-carboxylate (10). A solution of **9** (5.20 g, 18.9 mmol) in DME (100 mL) was stirred with KHCO₃ (5.69 g, 56.8 mmol) under cooling for 5 min and with **3a** (9.21 g, 4.72 mmol) for 30 min and then at rt overnight. Concentration *in vacuo* gave a reddish syrup, which was dissolved in CHCl₃ (100 mL) and washed with water (100 mL x 2) and then dried over anhydrous Na₂SO₄. The resulting solution was again concentrated *in vacuo* to give a residual syrup, which was dissolved in dimethoxyethane (100 mL). The solution was stirred with TFAA (5.30 mL, 37.8 mmol) and pyridine (6.80 mL, 83.2 mmol) under cooling for 30 min and at rt for 1 h. Concentration *in vacuo* gave a residual syrup, which was dissolved in EtOAc (100 mL) and washed with brine (100 mL x 2) and then dried over anhydrous Na₂SO₄. Concentration *in vacuo* gave a syrup, which was dissolved in EtOAc (100 mL) and washed with brine (100 mL x 2) and then dried over anhydrous Na₂SO₄. Concentration *in vacuo* gave a syrup, which was purified on a silica gel column using a mixture of hexane and EtOAc (3 : 1 v/v) to give **10** as a colorless syrup. Yield 93%. [α]_D²³ -46.3° (*c* 0.99, MeOH). IR 2979, 2935, 1707 cm⁻¹. ¹H NMR: δ 1.22 (s, 9H, Boc's *t*-Bu), 1.42 (d, 3H, CHCH₃, *J*=6.1 Hz), 1.67 and 1.68 (each s, 6H, C(CH₃)₂), 2.77 (s, 3H, Thiazole's CH₃), 3.93 (s, 3H, COOCH₃), 4.11-4.18 (m, 1H, CHCH₃), 4.71 (br d, 1H, NCH, *J*=7.3 Hz). *Anal.* Calcd for C₁₇H₂₆N₂O₅S: C, 55.12; H, 7.07; N, 7.56. Found: C, 54.91; H, 6.87; N, 7.25.

Methyl 2-[(1*S*,2*R*)-1-(*N*-Buoxycarbonyl-2-hydroxy)]-5-methylthiazole-4-carboxylate (11). A solution of 10 (2.20 g, 6.14 mmol) in a mixture of TFA and CHCl₃ (250 mL; 4 : 96 v/v) was stirred at rt for 2 h. The reaction mixture was neutralized with saturated aqueous NaHCO₃ solution and then mixed with diethyl ether (200 mL). The resulting solution was washed with brine (50 mL x 2) and dried over anhydrous Na₂SO₄. Concentration *in vacuo* gave a pale yellow syrup, which was purified on a silica gel column using a mixture of hexane and EtOAc (1 : 1 v/v) to give 11 as a colorless syrup. Yield 90%. $[\alpha]_D^{23}$ –34.3° (*c*

0.99, MeOH). IR 3436, 2978, 2933, 1717, 1516, 1498 cm⁻¹. ¹H NMR: δ 1.30 (d, 3H, CHC*H*₃, *J*=6.3 Hz), 1.46 (s, 9H, Boc's *t*-Bu), 2.73 (s, 3H, Thiazole's CH₃), 2.96 (br s, 1H, OH), 3.90 (s, 3H, COOCH₃), 4.53-4.59 (m, 1H, CHCH₃), 4.82 (d, 1H, NHC*H*, *J*=8.3 Hz), 5.68 (br d, 1H, NH, *J*=8.3 Hz). *Anal*. Calcd for C₁₄H₂₂N₂O₅S: C, 50.89; H, 6.71; N, 8.48. Found: C, 50.50; H, 6.55; N, 7.99.

Methyl 2-[(Z)-1-(*N***-Boc)amino-1-propenyl]-5-methylthiazole-4-carboxylate (12):** To a solution of **11** (1.33 g, 4.04 mmol) in CHCl₃ (50 mL) were added, with stirring, Et₃N (2.56 mL, 18.4 mmol) and Ms-Cl (0.70 mL, 8.89 mmol) under cooling for 30 min and then at rt for 1 h. The resulting solution was stirred with DBU (0.92 g, 6.05 mmol) under cooling for 30 min and then at rt for 6 h. The reaction mixture was mixed with ether (50 mL), and washed with 10% citric acid (50 mL x 2), brine (50 mL x 3), and then dried over anhydrous Na₂SO₄. Concentration *in vacuo* gave a brown syrup, which was purified on a silica gel column using a mixture of hexane and EtOAc (3 : 2 v/v) to give crude crystals. Recrystallization from hexane-EtOAc gave colorless crystals. Yield 93%. mp 95.5-97.0 °C. IR 3317, 2976, 2948, 1712, 1696, 1654, 1514, 1495, 1436 cm⁻¹. ¹H NMR: δ 1.47 (s, 9H, Boc's *t*-Bu), 1.83 (d, 3H, CHC*H*₃, *J*=7.2 Hz), 2.74 (s, 3H, Thiazole's CH₃), 3.92 (s, 3H, COOCH₃), 6.16 (br s, 1H, NH), 6.37 (q, 1H, C=CHCH₃, *J*=7.2 Hz). *Anal.* Calcd for C₁₄H₂₀N₂O₄S: C, 53.83; H, 6.45; N, 8.97. Found: C, 53.68; H, 6.23; N, 9.10.

Methyl 2-[(E,Z)-1-(N-Boc)Amino-2-bromo-1-propenyl]-5-methylthiazole-4-carboxylate (13): A solution of 12 (1.29 g, 4.13 mmol) and NBS (0.82 g, 4.33 mmol) in CHCl₃ (50 mL) was stirred at rt for 30 min. To the resulting solution was added Et₃N (2.4 mL, 16.52 mmol) and then the mixture was stirred at rt for 2 h. The reaction solution was mixed with ether (50 mL) and washed with brine (50 mL x 3) and then dried over anhydrous Na₂SO₄. Concentration *in vacuo* gave a brown syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (3 : 1 v/v) to give crude crystals. Recrystallization from hexane-EtOAc gave 13 as colorless crystals. Yield 94%. mp 107-109.5 °C. IR 3207, 2985, 2976, 1714, 1627, 1504, 1487, 1430 cm⁻¹. ¹H NMR: δ 1.39 and 1.46 (s x 2, 9H x 2, Boc's *t*-Bu x 2), 2.54 and 2.67 (s x 2, 6H, CBr-CH₃ x 2), 2.76 and 2.78 (s x 2, 6H, Thiazole's CH₃ x 2), 3.91 and 3.92 (s x 2, 6H, COOCH₃ x 2), 6.26 and 6.57 (br s x 2, 2H, NH x 2). *Anal.* Calcd for (C₁₄H₁₉N₂O₄BrS)x2: C, 42.97; H, 4.89; N, 7.16. Found: C, 42.48; H, 4.57; N, 7.27.

Methyl 2-(2-Bromopropanoyl)-5-methylthiazole-4-carboxylate (15): A solution of 13 (1.63 g, 4.17 mmol) and TFA (25 mL) in CHCl₃ (50 mL) was stirred at rt for 2 h. The reaction reaction mixture was neutralized with saturated aqueous NaHCO₃ solution (25 mL). The resulting solution was mixed with ether (50 mL) and washed with brine (50 mL x 3). Concentration *in vacuo* gave a brown syrup, which was purified on a silica gel column using a mixture of hexane and EtOAc (3 : 1 v/v) to give crude crystals. Recrystallization from hexane-EtOAc gave 15 as colorless crystals. Yield 90%. mp 67-68.5 °C. IR 2958, 1710, 1687, 1492, 1460, 1445, 1423 cm⁻¹. ¹H NMR: δ 1.90 (d, 3H, CHCH₃, *J*=6.8 Hz), 2.87 (s, 3H, Thiazole's CH₃), 3.97 (s, 3H, COOCH₃), 5.75 (q, 1H, CHCH₃, *J*=6.8 Hz). ¹³C NMR: δ 14.1, 19.7, 40.9,

52.4, 143.1, 152.8, 159.2, 162.3, 187.1. *Anal.* Calcd for C₉H₁₀NO₃BrS: C, 37.0; H, 3.45; N, 4.79. Found: C, 37.04; H, 3.27; N, 5.20.

2-(N-Butoxycarbonyl-2,2,5-trimethyloxazolidinyl)-5-methylthiazole-4-carboxamide (16) A solution of 10 (2.54 g, 6.86 mmol) in a mixture of H₂O and dioxane (100 mL, 1 : 1 v/v) was stirred with 1 M LiOH (10.3 mL, 10.3 mmol) under cooling for 30 min. After stirring at rt for 6 h, the resulting solution was washed with diethyl ether (100 mL x 2), acidified with citric acid hydrate and then extracted with EtOAc (100 mL x 2). The combined extracts were washed with brine (100 mL x 3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a crude syrup, which was dissolved in THF (200 mL). The resulting solution was stirred with Et₃N (1.05 mL, 7.55 mmol) and ClCOOEt (0.75 mL, 7.87 mmol) below 0 ^oC for 40 min. The reaction mixture was stirred with 28% aqueous NH₃ (30 mL) for 35 min under cooling and then mixed with saturated aqueous NH₄Cl solution (200 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to give a crude syrup, which was purified on silica gel column using a mixture of hexane and EtOAc (1 : 1 v/v) to give crude crystals. Recrystallization from hexane-EtOAc gave 16 as colorless crystals. Yield 88%. mp 116.5-117.5 °C. $\left[\alpha\right]_{D}^{23}$ -62.8° (c 1.00, MeOH). IR 3472, 3412, 2979, 2933, 2874, 1708, 1678, 1587 cm⁻¹. ¹H NMR: δ 1.15 (s, 9H, Boc's *t*-Bu), 1.32 (d, 3H, CHCH₃, J=6.1 Hz), 1.61 (s, 6H, C(CH₃)₂), 2.74 (s, 3H, Thiazole's CH₃), 4.03-4.13 (m, 1H, CHCH₃), 4.41-4.55 (m, 1H, NCH), 4.47 (br s, 1H, NH), 7.16 (br s, 1H, NH). Anal. Calcd for C₁₆H₂₅N₃O₄S: C, 54.06; H, 7.09; N, 11.82. Found: C, 53.60; H, 6.97; N, 11.67.

2-(*N***-Butoxycarbonyl-2,2,5-trimethyloxazolidinyl)-5-methylthiazole-4-thiocarboxamide (17).** A solution of **16** (2.24 g, 6.02 mmol) and the Lawesson's reagent (1.47 g, 3.63 mmol) in diethoxyethane (50 mL) was stirred at rt for 12 h. After filtering the residual Lawesson's reagent, the filtrate was concentrated *in vacuo* to give a crude residue, which was purified on a silica gel column using a mixture of hexane and EtOAc (3 : 1 v/v) to give yellow crystals. Recrystallization from hexane-EtOAc gave **17** as pale yellow crystals. Yield 72%. mp 126.0-127.5 °C. $[\alpha]_D^{24}$ –70.5° (*c* 1.03, MeOH). IR 3345, 3260, 3168, 2977, 2929, 1699, 1617, 1514 cm⁻¹. ¹H NMR: δ 1.22 (s, 9H, Boc's *t*-Bu), 1.35 (d, 3H, CHCH₃, *J*=6.1 Hz), 1.66 and 1.68 (each s, 6H, C(CH₃)₂), 2.96 (s, 3H, Thiazole's CH₃), 4.01-4.22 (m, 1H, CHCH₃), 4.50-4.68 (m, 1H, NCH), 7.50 (br s, 1H, NH). *Anal.* Calcd for C₁₆H₂₅N₃O₃S₂: C, 51.73; H, 6.78; N, 11.31. Found: C, 51.72; H, 6.72; N, 11.64.

Methyl 2-{2-[(4S,5R)-3-Butoxycarbonyl-2,2,5-trimethyl(oxazolidin-4-yl)]-5-methyl(thiazol-4-yl)}-5methylthiazole-4-carboxylate (18). Similarly to the case of 10, thiazolation of 9 (1.80 g, 6.56 mmol) with 15 (2.35 g, 16.4 mmol) in DME (50 mL) and then treatment with TFAA (1.85 mL, 13.1 mmol) and pyridine (2.32 mL, 28.9 mmol) was worked up to give 18 as a colorless syrup. Yield 83%. $[\alpha]_D^{24}$ –38.4° (*c* 1.01, MeOH). IR 2979, 2932, 1707 cm⁻¹. ¹H NMR: δ 1.20 (s, 9H, Boc's *t*-Bu), 1.42 (d, 3H, CHCH₃, *J*=6.1 Hz), 1.69 (s, 6H, C(CH₃)₂), 2.78 (s, 3H, Thiazole's CH₃), 2.89 (s, 3H, Thiazole's CH₃), 3.94 (s, 3H, COOCH₃), 4.17-4.21 (m, 1H, CHCH₃), 4.50-4.65 (m, 1H, NCHCH). *Anal.* Calcd for C₂₁H₂₉N₃O₅S₂: C, 53.94; H, 6.25; N, 8.99. Found: C, 53.50; H, 6.27; N, 8.87.

Methyl 2-{2-[(4*S*,5*R*)-1-(Butoxycarbonyl)amino-2-hydroxy]propyl-5-methyl(thiazol-4-yl)}-5-methylthiazole-4-carboxylate (19). Similarly to the case of 11, deprotection of 18 (0.54 g, 1.15 mmol) with a mixture of TFA and CHCl₃ (100 mL, 4 : 96 v/v) was worked up to give 19 as colorless crystals. Yield 85%. mp 143.5-144.5 °C. $[\alpha]_D^{23}$ –35.2° (*c* 1.01, MeOH). IR 3346, 2973, 2932, 1722, 1685, 1519, 1444, 1435 cm⁻¹. ¹H NMR: δ 1.31 (d, 3H, CHC*H*₃, *J*=6.3 Hz), 1.48 (s, 9H, Boc's *t*-Bu), 2.79 (s, 3H, Thiazole's CH₃), 2.86 (s, 3H, Thiazole's CH₃), 3.40 (br s, 1H, OH), 3.94 (s, 3H, COOCH₃), 4.52-4.63 (m, 1H, CHCH₃), 4.81 (d, 1H, NHC*H*, *J*=9.3 Hz), 5.54 (d, 1H, NH, *J*=9.3 Hz). *Anal*. Calcd for C₁₈H₂₅N₃O₅S₂: C, 5057; H, 5.83; N, 9.83. Found: C, 50.50; H, 5.69; N, 9.87.

Methyl 2-{2-[(*Z*)-1-(Butoxycarbonyl)amino-1-propenyl]-5-methyl(thiazol-4-yl)}-5-methylthiazole-4carboxylate (20). Similarly to the case of 12, elimination of 19 (1.31 g, 3.06 mmol) with Et₃N (1.90 mL, 13.5 mmol) and MsCl (0.53 mL, 6.73 mmol) for 2 h at rt was worked up to give 20 as colorless crystals. Yield 94%. mp 158-159 °C. IR 3313, 2978, 2952, 2925, 2853, 1711, 1693, 1494 cm⁻¹. ¹H NMR: δ 1.48 (s, 9H, Boc's *t*-Bu), 1.86 (d, 3H, CHC*H*₃, *J*=7.2 Hz), 2.79 (s, 3H, Thiazole's CH₃), 2.87 (s, 3H, Thiazole's CH₃), 3.94 (s, 3H, COOCH₃), 6.13 (br s, 1H, NH), 6.34 (q, 1H, =C*H*CH₃, *J*=7.2 Hz). *Anal.* Calcd for C₁₈H₂₃N₃O₄S₂: C, 52.79; H, 5.66; N, 10.26. Found: C, 53.06; H, 5.68; N, 9.80.

Methyl 2-{2-[(*E*,*Z*)-1-(Butoxycarbonyl)amino-2-bromo-1-propenyl]-5-methyl(thiazol-4-yl)}-5-methylthiazole-4-carboxylate (21). Similarly to the case of 13, bromonation of 20 (0.39 g, 0.96 mmol) with NBS (0.19 g, 0.99 mmol) in CHCl₃ (30 mL) in the presence of Et₃N (0.5 mL, 3.8 mmol) was worked up to give 21 as colorless crystals. Yield 89%. mp 123-126 °C. IR 3296, 2975, 2950, 1704, 1622, 1490, 1434 cm⁻¹. ¹H NMR: δ 1.42 and 1.48 (each s, 9H x 2, Boc's *t*-Bu x 2), 2.79 (each s, 3H x 2, Thiazole's CH₃ x 2), 2.80 and 2.82 (each s, 3H x 2, CBrCH₃ x 2), 2.90 (each s, 3H x 2, Thiazole's CH₃ x 2), 3.94 (s, 3H x 2, COOCH₃ x 2), 6.20 (each br s, 1H x 2, NH x 2). *Anal.* Calcd for (C₁₈H₂₂N₃O₄S₂Br)x2: C, 44.26; H, 4.54; N, 8.60. Found: 43.84; H, 4.06; N, 8.44.

Methyl 2-[2-(2-Bromopropionyl)-5-methyl(thiazol-4-yl)]-5-methylthiazole-4-carboxylate (23). Similarly to the case of 15, deprotection and hydrolysis of 21 (0.26 g, 0.53 mmol) with TFA (10 mL) in CHCl₃ (25 mL) was worked up to give 23 as colorless crystals. Yield 93%. mp 166.5-167.5 °C. IR 2998, 2984, 2950, 2932, 1716, 1684, 1435, 1422 cm⁻¹. ¹H NMR: δ 1.93 (d, 3H, CHCH₃, *J*=6.8 Hz), 2.82 (s, 3H, Thiazole's CH₃), 3.01 (s, 3H, Thiazole's CH₃), 3.96 (s, 3H, COOCH₃), 5.70 (q, 1H, CHCH₃, *J*=6.8 Hz). *Anal.* Calcd for C₁₃H₁₃N₂O₃S₂Br: C, 40.11; H, 3.37; N, 7.20. Found: C, 40.10, 2.91; N, 7.34.

2-{2-[2-(*N*-Butoxycarbonyl-2,2,5-trimethyl(oxazolidin-4-yl))-5-methyl(thiazol-4yl)]}-5-methylthiazole4-carboxamide (24). Similarly to the case of 16, amidation of 18 (0.83 g, 1.78 mmol) consecutively with 1 M LiOH (2.66 mL, 2.67 mmol), Et₃N (0.27 mL, 1.91 mmol), ClCOOEt (0.18 mL, 1.91 mmol), and 28%

aqueous NH₃ (7 mL) was worked up to give **24** as colorless crystals. Yield 90%. mp 168-169 °C. $[\alpha]_D^{25}$ –39.8° (*c* 1.02, MeOH). IR 3469, 3272, 3221, 2979, 2932, 2901, 2872, 1698, 1684, 1661, 1589 cm⁻¹. ¹H NMR: δ 1.22 (s, 9H, Boc's *t*-Bu), 1.42 (d, 3H, CHCH₃, *J*=6.1 Hz), 1.70 (s, 6H, C(CH₃)₂), 2.82 (s, 3H, Thiazole's CH₃), 2.84 (s, 3H, Thiazole's CH₃), 4.20-4.28 (m, 1H, CHCH₃), 5.53-5.62 (m, 1H, NHCH), 5.58 (br s, 1H, NH), 7.19 (br s, 1H, NH). *Anal.* Calcd for C₂₀H₂₈N₄O₄S₂: C, 53.08; H, 6.24; N, 12.38. Found: C, 52.07; H, 6.08; N, 12.32.

2-{2-[2-(4*S***,5***R***)-(***N***-Butoxycarbonyl-2,2,5-trimethyl(oxazolidin-4-yl))-5-methyl(thiazol-4-yl)]}-5-methylthiazole-4-thiocarboxamide (25).** Similarly to the case of **17**, thioamidation of **24** (0.58 g, 1.28 mmol) with the Lawesson's reagent (0.16 g, 0.77 mmol) in DME (20 mL) for 16 h was worked up to give **25** as colorless crystals. Yield 90%. mp 110.5-111.5 °C . $[\alpha]_D^{26}$ –67.4° (*c* 0.95, CHCl₃). ¹H NMR: δ 1.21 (s, 9H, Boc's *t*-Bu), 1.42 (d, 3H, CHC*H*₃, *J*=6.1 Hz), 1.69 (s, 6H, C(CH₃)₂), 2.80 (s, 3H, Thiazole's CH₃), 3.00 (s, 3H, Thiazole's CH₃), 4.17-4.25 (m, 1H, CHCH₃), 4.57-4.64 (m, 1H, NHC*H*), 7.39 (br s, 1H, NH), 8.71 (br s, 1H, NH). *Anal*. Calcd for C₂₀H₂₈N₄O₃S₃: C, 51.26; H, 6.02; N, 11.95. Found: C, 51.30; H, 6.12; N, 12.00.

Methyl 2-(2-{2-[2-(4S,5R)-(N-Butoxycarbonyl-2,2,5-trimethyl(oxazolidin-4-yl)-5-methyl(thiazol-4yl))-5-methyl(thiazol-4-yl)]-5-methylthiazole}-4-carboxylate (26). A solution of 9 (0.44 g, 1.61 mmol) in DME (20 mL) in the presence of KHCO₃ (0.27 g, 2.65 mmol) was stirred for 5 min under cooling. To the resulting solution was added 23 (0.50 g, 1.33 mmol) and the solution was stirred for 30 min at 50 °C and then overnight at rt. The resultant solution was concentrated *in vacuo* to give a reddish syrup, which was dissolved in CHCl₃ (20 mL) and washed with water (200 mL x 2) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a reddish syrup, which was again dissolved in DME (50 mL). To the resulting solution were added, with stirring, TFAA (0.38 mL, 2.69 mmol) and pyridine (0.47 mL, 3.84 mmol) under cooling for 30 min. After stirring for 1 h at rt, the reaction mixture was concentrated in vacuo to give a reddish syrup, which was diluted with EtOAc (20 mL). The solution was washed with brine (2 x 20 mL) and dried over anhydrous Na₂SO₄ and then concentrated in vacuo. The obtained reddished syrup was purified on a silica gel column using a mixture of hexane and EtOAc (3 : 1 v/v) to give **26** as colorless crystals. Yield 69%. mp 115.0-117.5 °C. $[\alpha]_D^{27}$ -35.3° (c 0.98, CHCl₃). IR 2979, 2930, 1707 cm⁻¹. ¹H NMR: δ 1.23 (s, 9H, Boc's *t*-Bu), 1.42 (d, 3H, CHC*H*₃, *J*=6.1 Hz), 1.70 (s, 6H, Isop's CH₃ x 2), 2.81 (s, 3H, thiazole's CH₃), 2.87 (s, 3H, thiazole's CH₃), 2.93 (s, 3H, thiazole's CH₃), 3.95 (s, 3H, COOCH₃), 4.16-4.30 (m, 1H, CHCH₃), 4.57-4.70 (m, 1H, NCHCH). Anal. Calcd for C₂₅H₃₂N₄O₅S₃: C, 53.17; H, 5.71; N, 9.92. Found: C, 53.13; H, 5.68; N, 9.89.

Similarly, compound (26) were further derived from two routes, by reaction of 3a and 25 in 69% yield and of 15 with 17 in 65% yield.

ACKNOWLEDGMENT

This work was supported in part by Grant-in Aid for Scientific Research No. 14550829 from the Ministry of Education, Science, Sports and Culture and by "High-Tech Research Project" from the Ministry of Education, Culture, Sports, Science and Technology.

REFERENCES

- For examples, a) C. Shin, K. Nanjo, and J. Yoshimura, *Tetrahedron Lett.*, 1974, 521. b) C. Shin, Y. Sato, and J. Yoshimura, *Bull. Chem. Soc. Jpn.*, 1976, 49, 1909.
- 2. T. Suzuki, A. Nagasaki, K. Okumura, and C. Shin, Heterocycles, 2001, 55, 835.
- a) E. Selva, G. Beretta, N. Montanini, G. S. Saddler, L. Gastaldo, P. Ferrari, R. Lorenzetti, P. Landini, F. Ripamonti, B. P. Golstein, M. Berti, L. Montanaro, and M. Denaro, *J. Antibiot.*, 1991, 44, 693. b) J. Kettenring, L. Colombo, P. Ferrari, P. Tavecchia, M. Nebuloni, K. Vekey, G. C. Gallo, and E. Selva, *J. Antibiot.*, 1991, 44, 702. c) P. Tavecchia, P. Gentili, M. Kurz, C. Sottani, R. Bonfichi, S. Lociuro, and E. Selva, *J. Antibiot.*, 1991, 44, 1564.
- 4. P. Brooks, A. T. Fuller, and J. Walker, J. Chem. Soc., 1957, 689.
- 5. J. Walker, A. Olesker, L. Valente, R. Rabanal, and G. Lukacs, J. Chem. Soc., Chem. Commun., 1977, 706.
- 6. B. W. Bycroft and M. S. Gowland, J. Chem. Soc., Chem. Commun., 1978, 256.
- a) M. Aoki, T. Ohtsuka, M. Yamada, Y. Ohba, H. Yoshizaki, H. Yasuno, T. Sano, and H. Seto, J. Antibiot., 1991, 44, 582.
 b) M. Aoki, T. Ohtsuka, Y. Itezono, K. Yokose, K. Furihata, and H. Seto, *Tetrahedron Lett.*, 1991, 32, 217.
 c) M. Aoki, T. Ohtsuka, Y. Itezono, K. Yokose, K. Furihata, and H. Seto, *Tetrahedron Lett.*, 1991, 32, 221.
- 8. P. F. Kruse, Jr., N. Geurkink, and L. Grist, J. Am. Chem. Soc., 1954, 76, 5796.
- 9. C. G. Stuckwisch, G. G. Hammer, and N. F. Blau, J. Org. Chem., 1957, 22, 1678.
- 10. P. Siefert, E. Vogel, A. Rossi, and H. Schinz, Helv. Chim. Acta, 1950, 33, 752.
- 11. D. B. Sprinson and E. Chargaff, J. Biol. Chem., 1946, 164, 417.
- 12 a) C. Shin, T. Yamada, and Y. Yonezawa, *Tetrahedron Lett.*, 1983, 24, 2175. b) C. Shin, Y. Yonezawa, and T. Yamada, *Chem. Pharm. Bull.*, 1984, 32, 3934.
- 13. K. Okumura, A. Ito, H. Saito, Y. Nakamura, and C. Shin, Bull. Chem. Soc. Jpn., 1996, 69, 2309.
- 14. C. T. Brain, A. Hallett, and S. Y. Ko, J. Org. Chem., 1997, 62, 3808.
- 15. W. M. Bredenkamp, C. M. Holzapfel, and W. J. van Zyl, Syn. Commun., 1990, 29, 2235.