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Abstract – Palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-
propenyl acetate (4) with a dimethyl malonate-BSA-LiOAc system has been
successfully carried out in the presence of a new chiral prolinol-derived
aminophosphine ligand (3e) in good yield with good enantioselectivity (up to
96% ee).

INTRODUCTION

Palladium-catalyzed allylic alkylation is a widely used process in organic synthesis,1 and the
development of efficient enantioselective catalysis for this reaction is awaited.2 Chiral 2-
(phosphinoaryl)oxazoline can induce high enantiomeric excesses in this reaction.3 Following this
pioneering study, aminophosphines have been used as ligands for this reaction. Especially pyrrolidinyl-
containing aminophosphines such as 14 and 24c, 5 were found to be efficient chiral sources.6, 7
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Here, we report palladium-catalyzed asymmetric allylic alkylation using chiral aminophosphine ligands
(3) which have a hydroxymethyl group on the pyrrolidine backbone.  

RESULTS AND DISCUSSION

The chiral aminophosphine ligands (3) were easily prepared from (S)-prolinol and corresponding
phosphine oxides in 2 steps (Scheme 1). A nucleophilic aromatic substitution (SNAr) reaction8 of a
phosphine oxide compound such as diphenyl(2-methoxyphenyl)phosphine oxide with bislithiated (S)-



prolinol gave the corresponding aminophosphine oxide (4a). This aminophosphine oxide (4a) was
converted into the desired chiral aminophosphine ligand (3a) using trichlorosilane-triethylamine in good
yield. The other ligands (3b-f) were prepared in the same manner (Table 1).
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Table1. Preparation of Aminophosphine Ligands (3).

a Isolated yields.
b Ref 4c.

3, Yield / %a

3a, 90
3b, 65b

3c, 91
3d, 78

4, Yield / %a

4a, 61
4b, 75
4c, 39
4d, 36

3e, 83
3f, 75

4e, 76
4f, 63

Entry

1
2
3
4
5
6

N (1)
P (1)

O (1)

O (2)

Figure 1. X-Ray crystal structure of 3e.



The X-Ray crystal structure of (S)-3e9 in Figure 1 shows that more stable structure is aS-type
conformation about the C(Ar)–N bond. This trend appeared in the case of 2-(methoxymethyl)pyrrolidine
derived ligand (2b).
These chiral aminophosphine ligands (3) were applied to the palladium-catalyzed asymmetric allylic
alkylation of 1,3-diphenyl-2-propenyl acetate (5) with dimethyl malonate (6). This reaction was carried
out in the presence of 2 mol% of [Pd(η3-C3H5)Cl]2, 4 mol% of a chiral ligand, and a mixture of N,O-
bis(trimethylsilyl) acetamide (BSA) and 2 mol% of LiOAc in toluene (Scheme 2, Table 2).10, 11
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Entry Ligand Temp. / °C Yield / %b Ee / %c
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Table 2. Asymmetric Allylic Alkylation Catalyzed by Palladium Complexes with Ligands (3).a
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a The reaction was carried out at rt for 24 h.
b Isolated yields. 
c Determing by HPLC analysis using a chiral column (Chiralcel OD-H).
d This reaction was carried out for 3 d.
e This reaction was carried out for 7 d.
f Ref 4c

9f

10f
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rt

rt
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Using ligand (3a), the product (7) was obtained in good chemical yield, but the enantiomeric excess was
moderate (Entry 1). The ligand (3a) gave higher enantioselectivity than the ligand (2a) (Entry 1 vs. Entry
9). This manner appeared in the case of a naphthyl backbone type ligand such as 3b versus 1b (Entry 2
vs. Entry 10). When the reaction was carried out using the ligand (3e), the product (7) was obtained in
the best enantioselectivity (93% ee) in these ligands (3) (Entry 5). In order to improve the



enantioselectivity, we further examined the effect of reaction temperature using the ligand (3e). The
reaction at 0 °C further improved the enantioselectivity to 94% ee (Entry 7). Although enantioselectivity
was improved to 96% ee by further depressing the temperature (-20 °C), the reaction rate became slow
(Entry 8). The absolute configuration of the product (7) in these reactions was proved to be S as
determined from the sign of the optical rotation.12

We showed the palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate (5)
with dimethyl malonate (6) using chiral aminophosphine ligands (3) with high enantiomeric excess.
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