HETEROCYCLES, Vol. 60, No. 3, 2003, pp. 571 - 581 Received, 11th November, 2002, Accepted, 22nd January, 2003, Published online, 31st January, 2003 ACID ASSISTED REACTIONS OF 1,2-DIHYDRO-2-(4,5-DIHYDROIMIDAZOL-2-YL)PHTHALAZIN-1-OL WITH ARYL(HETEROARYL) METHYL KETONES

Franciszek Sączewski,^{a) *} Ewa Kobierska,^{a)} Jacek Petrusewicz,^{b)} Anna Gendźwiłł,^{b)} and Maria Gdaniec^{c)}

^{a)} Department of Chemical Technology of Drugs, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland e-mail: <u>saczew@amg.gda.pl</u>

^{b)} Department of Pharmacology, Medical University of Gdańsk,

80-227 Gdańsk, Poland

^{c)} Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland

Abstract – A series of the 1-[2-(4,5-dihydro-1*H*-imidazol-2-yl)-1,2-dihydrophthalazin-1-yl]-2-arylethanone hydrochlorides (**2a-i**) was synthesized by acid assisted reaction of phthalazine pseudobase (**1**) with aryl(heteroaryl) methyl ketones. A similar reactions of **1** with cyclohexanone and benzo-1,4-dioxan-2-one afforded 1, 2, 3, 4, 6, 7, 15b, 15c-octahydro-4a*H*-imidazo[1,2-*a*]phthalazino[2,1*c*]quinazolin-4a-ol (**5**) and 7-[2-(4,5-dihydro-1*H*-imidazol-2-yl)-1,2-dihydrophthalazin-1-yl]-1,4-benzodioxin-2(3*H*)-one (**6**), respectively. Structures of these compounds were confirmed by IR and NMR spectroscopy as well as X-Ray crystallographic analysis of the free base (**3a**). Biological activity of the compounds (**2**) was examined on rabbit aortic rings.

INTRODUCTION

It is well known that various imidazoline-containing compounds interact with adrenergic and/or imidazoline receptors and elicit a number of pharmacological effects on metabolism, secretion, ion transport, intraocular pressure dynamics and especially on cardiovascular function.^{1,2} This class of compounds appears to be interesting in that minor structural modifications can considerably alter their pharmacological profiles, and include selective α_2 -adrenoreceptor antagonist idazoxan³ and highly selective to I₂ receptors benazoline,⁴ BU224 and BU236⁵ (Figure 1).

Figure 1

We have previously reported the synthesis and reactions of 1,2-dihydro-2-(4,5-dihydroimidazol-2-yl)phthalazin-1-ol (1) with active methylene compounds⁶ and electron deficient acetylenes.⁷ These results prompted us to investigate further both the reactivity of pseudobase (1) and biological properties of the newly prepared imidazoline derivatives.

RESULTS AND DISCUSSION

Heterocyclic pseudobasic carbinolamines are known to react with methyl ketones under alkaline conditions with elimination of water molecule to afford the corresponding condensation products. The mechanism is believed to involve initial dissociation of pseudobase into mesomeric aminium cation and hydroxide ion followed by nucleophilic attack of the carbanion derived from carbonyl compounds.⁸

We found that in the case of phthalazine pseudobase (1) bearing the electron-withdrawing imidazoline moiety at the N2 nitrogen atom, the nondissociated form is apparently favored in polar solvents under both neutral and alkaline conditions, and therefore, the analogous reaction is not feasible.

However, when the compound (1) was subjected to the reaction with aryl methyl ketones in 10% methanolic HCl solution, work-up the reaction mixture yielded 1-[2-(4,5-dihydro-1*H*-imidazol-2-yl)-1,2-dihydrophthalazin-1-yl]-2-arylethanone hydrochlorides (2a-i) in 39-79% overall yields (Scheme 1). The plausible mechanism seems to involve simultaneous acid-assisted enolization of the methyl ketone and dissociation of pseudobase (1) followed by nucleophilic alkylation to give the hydrochloride (2).

Treatment of hydrochloride (2a) with NaOH afforded the free base (3a). Structures of the compounds (2) and (3) were confirmed by elemental analyses, IR and NMR spectroscopic data (Table 1), MS spectrometry as well as X-Ray structure analysis of $3a^9$ (Figure 2).

It should be pointed out that under similar conditions aliphatic ketones such as acetone gave no expected alkylation product. However, the reaction of **1** with cyclohexanone proceeded smoothly with the formation of first the alkylation product (**B**), which subsequently underwent a spontaneous ring closure giving rise to formation of imidazo[1,2-a]phthalazino[2,1-c]quinazolin-4a-ol hydrochloride (**4**).

Table 1.]	Physico-chemic	al and sp	ectrosco	opic data for compounds (2a-i)		
		du	Yield	¹ H-NMR (DMSO-d ₆)	IR (KBr)	Elemental analysis
Compd	Formula	[°C]	[%]	[bbm]	[cm ⁻¹]	C H N
				2.58-2.65 (dd, J=13.6 Hz, J=12.0 Hz,1H, CH), 3.09-3.18 (dd, J=13.6	3416, 3162,	
$\mathbf{2b}$	C ₁₉ H ₁₉ N ₄ OC1	235-239	67	Hz, J=3.3 Hz, 1H, CH), 3.28-3.71 (m, 4H, 2CH2), 5.43-5.50 (dd,	3018, 1641,	Calcd: 64.31 5.40 15.79
		ethanol		J=12.0 Hz, J=3.3 Hz, 1H, CH), 7.41-7.70 (m, 10H, Ar, NH), 8.25 (s,	1548. 1448, 1293. 1106	Found: 64.15 5.22 15.88
				IIH, CH=N), 9.62 (S, IH, NH)	2110 2172	
				2.34 (s, 3H, CH ₃), 2.49-2.51 (dd, J=13.5 Hz, J=11.8 Hz, 1H, CH), 3.39	3418, 310/, 2020, 2040	Colod: 65 13 5 74 15 10
2c	C20H21N4UCI	224-229 DMF		(dd, J=13.5 Hz, J=3.2 Hz, 1H, CH), 3.30-3.80 (m, 4H, 2CH ₂), 5.40-	3029, 2940, 1630 1551	Calcu. 02.12 2.74 12.19 Found: 64 08 5 00 14 85
		IMIC		5.50 (dd, <i>J</i> =11.8 Hz, <i>J</i> =3.2 Hz, 1H, CH), 7.25-7.29 (d, <i>J</i> =8 Hz, 2H,	1457 1292	1 UULLU. UT. 70 U. 77 14.00
				Ar), 7.47-7.62 (m, 7H, Ar, NH), 8.24 (s, 1H, CH=N), 9.59 (s, 1H,		
			e i	2.36 (s, 3H, CH ₃), 2.52 (dd, <i>J</i> =13.8 Hz, <i>J</i> =12.2 Hz, 1H, CH), 3.12 (dd,	3402, 3145,	
2d	C ₂₀ H ₂₁ N ₄ OCI	\$77-777	53	J=13.8 Hz, J=3.4 Hz, 1H, CH), 3.29-3.76 (m, 2H, 2CH ₂), 5.50 (dd, J=	3028, 2990,	Calcd: 65.12 5.74 15.19
		etnanoi		[12.2 Hz, J=3.4 Hz, 1H, CH), 7.2-7.62 (m, 8H, Ar), 7.75 (s, 1H, NH), 8 20 (s 1H CH=N) 0 60 (s 1H NH ⁺)	1038, 1242, 1340, 1292	round: 03.01 / 8.C
				0.20 (3, 111, 211 17), 200 (3, 111, 141) 7 40-7 63 (dd 1=13 6 Hz 1=1 8 Hz 1H CH) 3 05-3 16 (dd 1=13 6	4318 3055	
ć	Coole N.O.CI	189-193	39	$[H_7 = H_2 0 H_7 - 1H - CH + 3 - 90.2 7 A (m - AH - 3 - CH - 1) - 3 - 80 (e - 3H - OCH - 1)$	2841, 1639,	Calcd: 62.41 5.50 14.56
7 6	1070411711070	methanol		5 43-5 51 64 1=11 8 Hz 1=3 0 Hz 1H CH) 6 08 (4 1=8 8 Hz 2H	1551, 1290.	Found: 62.77 5.81 14.32
				Ar). 7.03-7.68 (m. 7H. Ar. NH). 8.24 (s. 1H. CH=N). 9.58 (s. 1H.	1246, 1176	
				NH ⁺)		
				2.55 (dd, J=13.2 Hz, J=12,8 Hz, 1H, CH), 3.12 (dd, J= 13.2 Hz, J=3.3	3406, 3083,	
2f	C ₂₀ H ₂₁ N ₄ O ₂ Cl	211-214	47	Hz, 1H, CH ₂), 3.37-3.70 (m, 4H, 2CH ₂), 3.80 (s, 3H, OCH ₃), 5.49 (dd,	2925, 2842,	Calcd: 62.41 5.50 14.56
i		methanol		J=12.8 Hz, J=3.3 Hz, 1H, CH), 6.95-6.99 (m, 1H, Ar), 7.22-7.63 (m,	1939, 1600,	Found: 62.11 5.19 14.65
				7H, Ar), 7.77 (s, 1H, NH), 8.20 (s, 1H, CH=N), 9.60 (s, 1H, NH ⁺)	1555, 1489	
				2.58-2.66 (dd, J=13.6 Hz, J=12.0 Hz, 1H, CH), 3.09-3.17 (dd, J=13.6	3413, 3030,	
2σ	C ₁₉ H ₁₈ N ₄ OCl ₂	220-223	46	Hz, J=3.6 Hz, 1H, CH), 3.37-3.73 (m, 4H, 2CH ₂), 5.39-5.47 (dd,	2901, 2848,	Calcd: 58.62 4.66 14.39
D		DMF		J=12.0 Hz, J=3.6 Hz, 1H, CH), 7.44-7.72 (m, 9H, Ar, NH), 8.25 (s, 1H,	1640, 1552,	Found: 59.01 4.56 14.44
				CH=N), 9.60 (s, 1H, NH ⁺)	1491, 1292	
				2.42-2.55 (dd, J=13.7 Hz, J=11.4 Hz, 1H, CH), 3.05-3.14 (dd, J=13.7	3392, 3252,	
2h	C19H21N5OCl2	216-219	55	Hz, J=3.3 Hz, 1H, CH), 3.39-3.72 (m, 4H, 2CH ₂), 5.23 (s, 3H, NH ₃ ⁺),	3021, 2849,	Calcd: 56.16 5.21 17.24
		ethanol		5.43 (dd, J=11.4, J=3.3 Hz, 1H, CH), 6.57 (d, J=7.9 Hz, 1H, Ar), 6.72	2595, 1639,	Found: 55.92 5.17 17.59
				(d, J=7.7 Hz, 1H, Ar), 6.87 (s, 1H, Ar), 7.08 (t, J=7.9 Hz, 1H, Ar),	1581, 1549	
				7.46-7.60 (m, 5H, Ar , NH), 8.23 (s, 1H, CH=N), 9.57 (s, 1H, NH ⁺)		
				2.54-2.60 (dd, J=13.7 Hz, J=12.0 Hz, 1H, CH), 3.03-3.12 (dd, J=13.7	3511, 3448,	
2i	C ₁₉ H ₁₉ N ₄ O ₂ Cl	181-184	60	Hz, J=3.3 Hz, 1H, CH), 3.39-3.71 (m, 4H, 2CH ₂), 5.39-5.40 (dd,	3187, 3042, 5052	Calcd: 61.54 5.16 15.11
		methanol		J=12.0 Hz, J=3.3 Hz, 1H, CH), 6.81-6.87 (d, J= 7.7 Hz, 2H, Ar), 7.34-	2979, 2672,	Found: 61.24 5.37 15.49
				7.76 (m, 7H, NH), 8.23 (s, 1H, CH=N), 9.55 (s, 1H, NH ⁺), 9.79 (s, 1H,	1641, 1553	
				(HO		

Scheme 1

Figure 2. Ortep drawing of molecule (3a)

For analysis of conformational preference of compound 4, after complete assignment of all the protons using the HH-COSY, HSQC and HMBC spectra, the connection mode and the stereochemistry of the pentacyclic ring system was investigated using a ROESY experiment. As shown in Figure 3, the strong

ROEs effects between O-H and both C15b-H and C15c-H indicate that cyclohexane and pyrimidine rings of the central quinazoline moiety exist in a *cis*-fused configuration. In this configuration OH group adopts equatorial position with respect to cyclohexane ring and axial position with respect to pyrimidine ring. The reverse arrangement is found for C15c-H proton, and C15b-H is in axial position of pyrimidine ring. Four large three-bond coupling constants between aksjal protons at C15c, C1, C2, C3 and C4 (${}^{3}J_{aa}\sim12.5$ -13.5 Hz) demonstrate that cyclohexane ring is in the chair conformation. The proton at C15b has a coupling constant of J = 2.9 Hz with C15c-H, which is in agreement with the results of structural quantum chemical calculations ¹⁰ which revealed that the dihedral angle between these C-H bonds is 52°.

Scheme 2

The salt (4) could be converted by NaOH into the corresponding free base (5) (Scheme 2).

We also investigated the acid assisted reaction of pseudobase (1) with benzo-1,4-dioxan-2-one. The ¹H-NMR spectrum of the product showed the presence of 7-substituted benzo-1,4-dioxan-2-one (6) which was formed by electrophilic attack of the phthalazinium mesomeric cation at the aromatic ring.

However, the above reaction could, in principle, give rise to either 7- or 6-substituted benzo-1,4-dioxan-2-one and these isomers cannot be easily distinguished on the basis of NMR spectral data. With the aim to confirm the reaction mechanism, we investigated the electronic properties of phthalazinium cation (**A**), benzo-1,4-dioxan-2-one (**C**) and its enol form (**D**) by using a molecular orbital *ab initio* method.¹⁰ Total energies, dipole moments, atomic charges on selected atoms and absolute values of HOMO and LUMO mapped on the van der Waals contact surface are shown in Figure 4.

Scheme 3. The strong ROE relationships found for hydrochloride (4) (*left*), and the minimum energy structure of the stereoisomer (4a*S*,15b*R*,15c*R*) of **4**.

Figure 4. Atomic charges and absolute values of the HOMO and LUMO on the electron density isosurface corresponding to the van der Waals surface calculated for phthalazinium cation (A) and benzo-1,4-dioxan-2-one (see text for details).

According to *ab initio* computed electronic structure of phthalazinium cation (**A**), both positive charge (0.28 e) and LUMO (0.0361 a.u.) have the highest contribution for C1 carbon atom, which must be involved in the reaction with nucleophiles.

On the other hand, the relative low stability and lower dipole moment of tautomer (D) would make tautomer (C) more favored in polar methanolic solution, and therefore, the product formed from the reaction should be derived from the ketone (C) rather than the enol form (D).

The magnitudes of the calculated negative charges at C6 and C7 of ketone (**C**) are very close (-022 e and -0.23 e, respectively) which suggests that the electrostatically-controlled reaction with phthalazinium cation should give rise to the formation of a mixture of 6- and 7-substituted products. However, the reaction of phthalazinium cation with soft nucleophiles would be the orbital-controlled reaction. As seen in Figure 4, the C7 carbon atom in ketone (**C**) (HOMO = 0.0212a.u.) is more active than the C6 (HOMO = 0.0145a.u.), and therefore, the orbital-controlled reaction at this position is possible.

The biological activity of the compounds (2) was examined on rabbit aorta. We found that neither contractile nor dilatatory effect was elicited by these compounds but they enhanced vasocontractile response to phenylephrine. As exemplified in Figure 5, compound (2c) at concentrations 10^{-7} and 10^{-6} mol/L enhanced contraction response to phenylepinephrine ($3x10^{-4}$ mol/L) by 19 and 38%, respectively. The enhancing effect was abolished by rimalkalim, the K_{ATP} channel opener. These results confirmed the observations made by other authors that a variety of imidazoline-based agents antagonize the vasodilatatory effect of K⁺-channel openers.^{11,12}

Figure 5 The influence of the compound (2c) on the contraction responce to the phenylepinephrine in isolated rabbit aortic rings (Means and ±SEM from 7 experiments).

EXPERIMENTAL

Melting points were determined on a Boetius apparatus and are not corrected. IR spectra were obtained on a Perkin-Elmer FT 1600 spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded in DMSO-d₆ with Varian Gemini 200 spectrometer. Chemical shifts were measured relative to residual solvent signal at 2.50 ppm and 39.5 ppm, respectively. 2D NMR spectra were recorded on a Varian Unity 500 spectrometer at 295 K. ROESY experiments were made with a mixing time of 350 msec. MS spectra were recorded on a LKB 9000 spectrometer.

Synthesis of 1-[2-(4,5-dihydro-1*H*-imidazol-2-yl)-1,2-dihydrophthalazin-1-yl]-2-(2-thienyl)ethanone hydrochloride (2a) (Typical Procedure)

2-Acetylthiphene (0.4 ml, 3.7 mmol) was added to a solution of compound (1)⁷ (0.5 g, 2.3 mmol) in 10% methanolic HCl solution (5 mL), and the reaction mixture was kept at room temperature for 3 days. The solid that precipitated was filtered off, washed with cold methanol, and crystallized from methanol to give **2a**; yield 0.66 g, (79%); mp 213-216 °C; IR (CHCl₃): 3420, 3080, 3024, 1644, 1552, 1295, 1232, 1104 (cm⁻¹). Anal. Calcd for C₁₇H₁₇N₄OClS: C, 56.58; H, 4.75; N, 15.53. Found: C, 56.38; H, 4.33, N, 15.12. Analogously were obtained hydrochlorides (**2b-i**) (Table 1).

1-[2-(4,5-Dihydro-1*H*-imidazol-2-yl)-1,2-dihydrophthalazin-1-yl]-2-(2-thienyl)ethanone (3a)

The above described hydrochloride (**2a**) (0.66 g, 1.72 mmol) was dissolved in methanol (5 mL) and treated with 5% methanolic solution (1.4 mL, 1,75 mmol) of NaOH to pH = 9. The solvent was evaporated under reduced pressure, and the solid residue was washed with water (20 mL), dried and purified by crystallization from acetone; yield 0.48 g (72.7%); mp 179-182 °C; IR: 3392, 2984, 1648, 1632, 1612, 1568, 1404, 1284, 1152, 1120 (cm⁻¹); ¹H-NMR (CDCl₃) δ 3.22-3.26 (dd, 1H, CH, *J* = 14 Hz, *J* = 4.5 Hz), 3.38-3.42 (dd, 1H, CH, *J* = 14 Hz, *J* = 9 Hz), 3.44-3.79 (m, 2H, CH₂), 3.79-3.92 (m, 2H, CH₂), 5.17 (s, 1H, NH), 6.17-6.21 (dd, 1H, CH, *J* = 9 Hz, *J* = 4.5 Hz), 6.80 (t, 1H, Ar, *J* = 5 Hz), 7.16 (d, 1H, Ar, *J* = 7.2 Hz), 7.20 (d, 1H, Ar, *J* = 7.2 Hz), 7.27-7.34 (m, 2H, Ar), 7.48 (s, 1H, CH=N), 7.59 (d, 1H, Ar, *J* = 5 Hz), 7.83 (d, 1H, Ar, *J* = 3.5 Hz); ¹³C-NMR (CDCl₃) δ 43.09, 45.39, 52.82, 124.24, 125.51, 127.01, 128.47, 128.58, 131.45, 121.84, 133.07, 134.17, 139.12, 144.92, 161.29, 190.02. (324.40); Anal. Calcd for C₁₇H₁₆N₄OS: C, 62.94; H, 4.97; N, 17.27. Found: C, 62.72; H, 4.66; N, 17.01.

Synthesis of (4a*SR*,15b*RS*,15c*RS*)-1,2,3,4,6,7,15b,15c-octahydro-4a*H*-imidazo[1,2-*a*]phthalazino-[2,1-*c*]quinazolin-4a-ol hydrochloride (4)

Cyclohexanone (0.26 mL, 2.5 mmol) was added to a solution of pseudobase (1) (0.5 g, 2.3 mmol) in 10% methanolic HCl solution (5 mL), and the reaction mixture was stirred at rt for 2 days. The crude product (4) that precipitated was collected by filtration, washed with cold methanol, dried and recrystallized from DMF; yield 0.52 g (68%); mp 166-168°C; IR (KBr): 3483, 1883, 1636, 1563, 1520, 1472, 1456, 1163, 992 (cm⁻¹); ¹H-NMR (DMSO-d₆) δ 1.00-1.1 (m, 1H, CH), 1.18-1.28 (m, 1H, CH), 1.3-1.4 (m, 1H, CH), 1.52-1.6 (m 1H, CH), 1.6-1069 (m, 3H, CH), 2.16-2.21 (d, 1H, CH₂, *J* = 13.6 Hz), 2.80-2.85 (m, 1H, CH), 3.65-3.72 (m, 1H, CH), 3.75-3.84 (m, 2H, CH), 3.86-3.93 (m, 1H, CH), 5.61 (d, *J* = 2.9 Hz, 1H, CH), 7.46-7.50 (m, 2H, Ar), 7.55-7.58 (m, 1H, Ar), 7.60-7.64 (m, 1H, Ar), 8.05 (s, 1H, CH=N), 9.42 (s, 1H, N⁺H); ¹³C-NMR (DMSO-d₆) δ 21.74, 22.54, 23.46, 34.95, 40.89, 41.09, 42.64, 51.84, 81.09, 122.88, 124.52, 128.34, 128.61, 129.89, 133.18, 145.42, 155.25. Anal. Calcd for C₁₇H₂₁N₄OCl: C, 61.34; H, 6.36; N, 16.83. Found: C, 61.11; H, 6.59; N, 16.52.

(4a*SR*,15b*RS*,15c*RS*)-1, 2, 3,4,6,7,15b,15c-Octahydro-4a*H*-imidazo[1,2-*a*]phthalazino[2,1-*c*]quinazolin-4a-ol (5)

The above described hydrochloride (**4**) (0.5 g, 1.5 mmol) was dissolved in water (5 mL) and treated with 5% aqueous NaOH (1.25 mL, 1.55 mmol) to pH = 9. The solid thus obtained was separated by filtration, washed with water and dried to give pure product (**5**); yield 0.4 g (90%); mp 180-183 °C (methanol); IR (KBr): 3471, 3148, 2943, 1642, 1560, 1451, 1299, 1072, 1020, 782 (cm⁻¹); ¹H-NMR (DMSO-d₆) δ 1.00-1.65 (m, 6H, 3CH₂), 2.16-2.19 (d, 1H, CH₂, *J* = 13.6 Hz), 2.80-2.82 (d, 1H, CH), *J* = 11.7 Hz), 3.67-3.94 (m, 6H, 2CH₂, CH, OH), 5.61 (s, 1H, CH), 7.43-7.60 (m, 4H, Ar), 8.03 (s, 1H, CH); ¹³C-NMR (CDCl₃) δ 22.48, 23.25, 24.18, 35.69, 41.64, 41.91, 43.33, 52.54, 123.62, 125.28, 129.03, 129.34, 130.63, 133.9, 146.09; MS (70 eV) *m/z* (%): 296 (M⁺, 8), 278 (M⁺ -H₂O, 31.1), 277 (20.9), 200 (18.2), 199 (100), 156 (7.5), 117 (8.9), 116 (6.4). Anal. Calcd for C₁₇H₂₀N₄O: C, 68.89; H, 6.80; N, 18.90. Found: C, 68.67; H, 6.44; N, 18.77.

Synthesis of 7-[2-(4,5-dihydro-1*H*-imidazol-2-yl)-1,2-dihydrophthalazin-1-yl]-1,4-benzodioxin-2(3*H*)-one (6)

Benzo-1,4-dioxan-2-one (0.37 g, 2.5 mmol) was added to a solution of pseudobase (1) (0.5 g, 2.3 mmol) in 10% methanolic HCl solution (5 mL), and the reaction mixture was kept at rt for 3 days. The solvent was evaporated to dryness under reduced pressure. The crude hydrochloride thus obtained was dissolved in water (10 mL) and neutralized with 5% aqueous NaOH. The amorphous product was filtered off, washed with cold water, dried and recrystallized from methanol to give pure product (6); yield 0.34 g (42%); mp 195-198 °C; IR (KBr): 3376, 2392, 2352, 1636, 1520, 1484, 1343, 1284, 1184, 980 (cm⁻¹); ¹H-

NMR (DMSO-d₆) δ 3.75 (m, 4H, 2CH₂), 4.6 (m, 2H, CH₂), 6.46-6.81 (m, 4H, CH), 7.31-7.63 (m, 4H, Ar), 8.2 (s, 1H, CH=N), 9.22 (s, 1H, NH); MS (70 eV) *m/z* (%): 348 (M⁺, 100), 320 (M⁺-CO, 14). 199 (5.4), 190 (8.8), 144 (12.7), 131 (7), 117 (11.6), 76 (5.3). Anal. Calcd for C₁₉H₁₆N₄O₃: C, 65.51; H, 4.63; N, 16.08. Found: C, 65.29; H, 4.54; N, 15.93.

X-Ray structure analysis of 3a

Crystal data for C₁₇H₁₆N₄OS: monoclinic, space group *C*2/c, *a*=25.431(1), *b*=8.118(1), *c*=17.431(1) Å, β =121.50(1)°, *V*=3068.3(4) Å³, *Z*=8, *d_x* =1.404 g.cm⁻³, *T*=294K. Data were collected for a crystal with dimensions 0.6x0.5x0.1 mm on a KumaCCD diffractometer using graphite monochromated Mo *K_α* radiation. Final R indices for 2649 reflections with I>2 σ (I) and 227 refined parameters are: R₁=0.0570, wR₂=0.1633 (R₁=0.0689, wR₂=0.1800 for all 2690 data). Atom labeling is shown in Figure 2.

ACKNOWLEDGMENT

We thank the Polish State Committee for Scientific Research (Grant No 6 P05F 03821) for financial support of this work.

REFERENCES

- 1. J. P. Hielbe, W. E. Bondinell, and R. R. Ruffolo, J. Med. Chem., 1995, 38, 3415.
- 2. G. J. Molderings, J. Hypertens., 1997, 15 (Suppl. 1), S9-S23.
- C. B. Chapleo, P. L. Myers, R. C. M. Butler, J. C. Doxey, A. G. Roach, and C. F. C. Smith, *J. Med. Chem.*, 1983, 26, 823.
- 4. A. Carrieri, L. Brasili, F. Leonetti, M. Pigini, M. Giannella, P. Bousquet, and A. Carotti, *Bioorg. Med. Chem.*, 1997, **5**. 843.
- 5. A. L. Hudson, S. Husbands, J. W. Lewis, and D. J. Nutt, Br. J. Pharmacol., 1994, 112, S320.
- 6. F. Sączewski and M. Gdaniec, Liebigs Ann., 1996, 1673.
- 7. F. Sączewski and M. Gdaniec, J. Heterocycl. Chem., 1998, 35, 707.
- D. Beke, 'Advances in Heterocyclic Chemistry: Heterocyclic Pseudo Bases,' Vol. 1, ed. by A. R. Katritzky, Academic Press, New York, 1963, pp. 167-186.
- Crystallographic data for 3a have been deposited with the Cambridge Crystallographic DATA Centre, CCDC deposition number:193201 Copies of this information may be obtained free of charge from:

The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax:+44-1223-3360033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

- 10. The structures of **4**, phthalazinium cation (**A**), benzo-1,4-dioxan-2-one (**C**) and its enol form (**D**) were fully optimized in the gas phase. Assignment of atomic charges and obtaining graphs that show the values of the HOMO and LUMO on the electron density isosurface corresponding to a van der Waals contact surface were performed using *ab initio* module (direct Hartree-Fock method, 6-31g** basis set) as implemented into SPARTAN v. 5.0 program installed on a Silicon Graphics O₂ workstation.
- 11. J. L. Challinor and G. A. McPherson, Clin. Exp. Pharmacol. Physiol., 1993, 20, 467.
- 12. K. Okamura, K. Ichihara, and M. Nagasaka, Eur. J. Pharmacol., 1992, 215, 253.