HETEROCYCLES, Vol. 60, No. 4, 2003, pp. 825 - 831 Received, 6th December, 2002, Accepted, 5th February, 2003, Published online, 3rd March, 2003

BENZOPYRANS. PART 44.¹ SYNTHESIS OF 3-(4-OXO-4*H*-1- BENZOPYRAN-2-YL)INDOLIZINES

Chandra Kanta Ghosh, *^a Sumit Kumar Karak,^a and Amarendra Patra^b

^aDepartment of Biochemistry, Calcutta University, Kolkata - 700019, India (e-mail: chandrakantaghosh@rediffmail.com); ^bDepartment of Pure Chemistry, Calcutta University, Kolkata – 700009, India (e-mail : amarendra@satyam.net.in)

Abstract – The pyridinium methylid (**5**), generated from 1-(4-oxo-4*H*-1 benzopyran-2-yl)methylpyridinium iodide (**4**) in the presence of a base, undergoes [3+2] cycloaddition with dimethyl acetylenedicarboxylate and ethyl propiolate, the cycloadducts rapidly aromatising to the indolizines (**8**) and (**9**), respectively. Similar cycloaddition of **5** with ethyl acrylate and acrylonitrile is also followed by dehydrogenation giving respectively the indolizines (**9**) and (**10**).

The finding of biological activity of 2-(5-tetrazolyl)chromone² has led to a spate of synthesis of various heterocycles directly linked to 2-position of 1-benzopyran-4-one (chromone) as generally represented by **A**. These can be prepared by (i) dehydrogenative cyclisation of the chalcones B, derived from hetaryl aldehydes and 2-hydroxyacetophenone,³ (ii) Baker-Venkataraman transformation of appropriate *O*-acylacetophenones **C** ($R = H$, Ph),⁴ and (iii) elaboration of X functionality of **D** to a heterocyclic system without affecting its chromone moiety. Preparation of 2-(5-tetrazolyl)chromone by heating the nitrile (1) with sodium azide – ammonium chloride in $DMF^{2,5}$ and that of the Hantzsch ester substituted with the chromon-2-yl moiety at 4-position by treating the aldehyde (2) with ethyl β-aminocrotonate⁶ illustrate the last named method which has recently been gaining popularity. Another addition to this illustration is the conversion of 2-methylchromone (**3**) into the title indolizines as described in this paper.

Methyl group of 2-methylchromone (**3**) is sufficiently active so as to react with iodine and pyridine forming the 1-alkylpyridinium iodide $(4)^7$ which is likely to form the ylid (5) in the presence of a base. The formation of indolizine derivatives by [3+2] cycloaddition of pyridine related ylids with acetylenic esters is well known. As for example, 1-pyridinium phenacylid and dimethyl acetylenedicarboxylate

(DMAD) in the presence of palladium on charcoal gives dimethyl 3-benzoylindolizine-1,2 dicarboxylate.⁸ The intermediate dihydroindolizines obtained by addition of pyridinium ylids with DMAD and other activated acetylenes usually undergo rapid aromatisation even in the absence of any exogenous dehydrogenating agent.⁹ The pyridinium iodide (4) with equimolar amount of DMAD (6, Y = $E = CO₂Me$) in refluxing acetone containing potassium carbonate yielded in our hands the 3-substituted indolizine (**8**) (Tables 1-3), the intermediate dihydroindolizine (**7**) resulting from [3+2] cycloaddition of pyridinium methylid (5) with DMAD not being isolated (Scheme 1). Ethyl propiolate (EP) (6, $Y = H$, $E =$ CO₂Et) like DMAD reacted with 4 giving the indolizine (9) (Tables 1-3) *via* 7 (Y = H, E = CO₂Et). Similar treatment of **4** with ethyl acrylate and acrylonitrile gave respectively the indolizines (**9**) and (**10**) (Tables 1-3) albeit in low yield evidently *via* the tetrahydroindolizine intermediate (**7**, $Y = H$; $E = CO₂Et$ or CN; 1,2-double bond reduced). These results indicate that the ylid (**5**) is highly reactive towards activated alkynes as well as alkenes. All the indolizines (**8**-**10**) when dissolved in chloroform give blue fluorescence.

Comp	Yield $(\%)$	$Mp (^{\circ}C)$	Analysis						
d			Calculated			Found			
			\mathcal{C}	H	N	\mathcal{C}	H	N	
8a	54		66.8	4.0	3.7	66.5	3.7	3.9	
8b	44	186	67.5	4.4	3.6	67.7	4.2	3.4	
8c	67	232	61.2	3.4	3.4	61.6	3.5	3.2	
9a	48	199	72.1	4.5	4.2	72.4	4.7	4.0	
9 _b	43	186	72.6	4.9	4.0	72.3	4.5	4.2	
9c	70	206	65.3	3.8	3.8	65.7	3.4	3.6	
10a	28	220 (decomp)	75.5	3.5	11.2	75.2	3.7	11.0	
10 _b	37	224	76.0	4.0	9.3	76.3	3.7	9.6	
10c	25	227 (decomp)	67.4	2.8	8.7	67.6	3.0	9.0	

Table 1 – Analytical data of the indolizines (**8**-**10**)

Table 2 – ¹H-NMR spectral data^a (δ in CDCl₃) of the indolizines (8-10)

Compd	$5-H$, $8-H$	5^{\prime} -H	$2-H$ (s)	$7'$ -H, $8'$ -H	$7-H$, $6-H$	$3'$ -H (s)	$CO2Me$ (s) or $CH2Me$ (t), $CO2CH2Me(q)$ 6 ² -Me (s)	
$8a^b$	8.55, 8.37	8.25		7.72, 7.47	7.32, 7.00	6.67	3.99, 3.93	
8 _b	8.50, 8.25	7.91		7.45, 7.30	7.24, 6.94	6.56	3.94, 3.87	2.40
8c	8.52, 8.32	8.14		7.62, 7.40	7.32, 7.01	6.63	3.97, 3.94	
$9a^b$	8.82, 8.30	8.17	7.75		$7.68 \rightarrow 6.22$		4.33	1.40,
9 _b	8.73, 8.19	7.83	7.62	7.37, 7.29	7.16, 6.87	6.48	4.30	1.36, 2.33
9c	8.76, 8.29	8.07	7.72	7.56, 7.46	7.23, 6.95	6.56	4.35	1.40,
$10a^b$	8.86, 7.80	8.25	7.60	7.73 7.55	7.32, 7.05	6.69		
10 _b	8.85 7.77	8.00	7.56	7.52 7.43	7.30 7.04	6.63		2.37
10c	8.83, 7.82	8.22	7.62	7.68, 7.52	7.34 7.07	6.69		

^a Aryl protons and indolizinyl protons at positions 5-8 show normal splitting pattern.

 b ^b 6´-H of **8a**, **9a** and **10a** appears at around δ 7.47.

Carbon No./	8a	8b	8c	9a	9 _b	9c	10a	10 _b
Type								
1	103.9	103.9	104.3	106.8	nd	107.1	nd	86.4
$\sqrt{2}$	126.8	126.6	127.1	120.9	120.6	121.2	121.0	120.9
\mathfrak{Z}	nd	115.5	nd	117.1	117.0	116.7	nd	118.3
5	125.5	125.5	125.4	126.3	126.3	126.3	126.6	126.7
$\boldsymbol{6}$	115.2	155.1	115.3	114.4	114.3	114.6	115.1	115.0
$\overline{7}$	125.1	125.2	125.2	124.5	124.3	124.7	124.7	124.7
$8\,$	120.8	120.6	120.9	120.4	120.3	120.5	118.6	118.6
8a	137.3	137.2	137.5	139.0	138.8	139.2	nd	140.7
2 [′]	156.0	154.6	155.1	157.6	157.0	157.4	156.2	156.0
3'	110.7	110.6	110.6	106.9	106.3	106.5	108.2	108.0
4 [′]	177.5	177.3	176.0	177.1	177.0	175.7	177.1	177.2
$4^{\prime}a$	124.0	123.7	125.2	124.2	123.7	125.0	124.3	124.0
5 [′]	125.9	125.2	125.5	125.8	125.0	125.2	126.0	125.4
$6'$	125.7	135.6	131.8	125.4	135.3	131.4	125.7	135.9
7'	134.1	135.1	134.2	133.5	134.5	133.6	133.9	135.1
8'	117.7	117.3	119.4	117.5	117.1	119.1	117.6	117.4
$8' a$	154.8	154.3	154.4	155.7	153.7	153.9	155.8	154.1
CO ₂ R	165.8	165.3	165.5	163.7	163.6	163.6		
	163.3	163.1	163.2					
CO ₂ Me	53.1	52.8	52.9					
	51.7	51.4	51.5					
CO ₂ CH ₂ Me				60.0	59.9	60.0		
CO ₂ CH ₂ Me				14.5	14.4	14.5		
$6^{\textdegree}-Me$		20.8			20.7			20.9

Table 3 – ¹³C-NMR spectral data (CDCl₃) of the indolizines $(8-10^a)$

^aCyano carbon of **10** evades detection; nd = not detected.

In the NMR spectrum of unsubstituted indolizine in CCl_4 as well as CDCl₃ solution, its 5- and 8-H appear at δ *ca.* 7.70 and 7.25, respectively.¹⁰ Methoxycarbonyl group at 1-position of indolizine deshields 8-H and that at 3-position deshields 5-H by *ca*. 1.0 and 1.6 ppm, respectively.¹¹ So in the ¹H-NMR spectra of **8** and **9**, the appearance of 8-H at δ *ca.* 8.30 is quite expected, the chromone moiety at their 3-position also exerting a deshielding effect on 5-H by the extent of nearly 0.8 ppm. Furthermore, $J_{5,6}$ and $J_{7,8}$ values

respectively as *ca.* 7.0 and 9.0 Hz conform to the values recorded for several substituted and unsubstituted indolizines.10

Carbons at positions 1-3 and 5-8 of unsubstituted indolizine appear at δ *ca.* 99, 114, 113, 125, 110, 117 and 120 ppm, respectively.¹² The ¹³C-chemical shift data (Table 3) of substituted indolizines (8) and (9) reveal that an alkoxycarbonyl group at 1-position brings about a downfield shift of both 1-C and 2-C by nearly 6 ppm, the latter peak being shifted further downward by introduction of a second alkoxy group at 2-position. A downfield shift by about 4 ppm of 3-C of 3-substituted indolizines (**8**-**10**) *vis-à-vis* that of the unsubstituted one is quite expected whereas the substitution at 1-3 positions have little effect on 5-8 carbon peaks.

EXPERIMENTAL

Yields and uncorrected melting points of the crystallised products are reported and no attempt was made to optimise the yield. IR spectra were recorded on a Perkin-Elmer 782 and NMR on a Bruker AM 300L spectrometer operating at 300 and 75 MHz for ${}^{1}H$ and ${}^{13}C$ NMR spectra, respectively.

1-(4-Oxo-4*H*-1-benzopyran-2-yl)methylpyridinium iodides (**4a-c**).

These were prepared in 50-70% yield by heating the appropriate 2-methylchromone (**3**) dissolved in pyridine with powdered iodine as described in the literature⁷ and crystallised from DMF. The pyridinium iodide (4a) had mp 220°C (DMF) (lit.,⁷ mp 200-205 °C); δ_H (DMSO-d₆) : 9.22 (2H, d, J = 6.0, 2',6'-H), 8.70 (1H, t, J = 7.8, 4²-H), 8.23 (2H, dd, J = 7.8, 6.0 Hz, 3^2 -,5²-H), 7.98 (1H, dd, J = 7.8, 1.3, 5-H), 7.78 $(1H, ddd, J = 8.4, 7.8, 1.5, 7-H), 7.55 (1H, d, J = 8.4, 8-H), 7.47 (1H, dd, J = 8.5, 7.4, 6-H), 6.59 (1H, s, 3-H)$ H) and 5.95 (2H, s, CH₂); δ_C (DMSO-d₆) : 176.7 (CO), 159.5 (2-C), 155.8 (8a-C), 147.0 (4⁻-C), 145.7 $(2^{\text{-}}.6^{\text{-}}C)$, 134.8 (7-C), 128.6 (3⁻-,5⁻-C), 126.0 (5-C), 124.9 (6-C), 123.2 (4a-C), 118.4 (8-C), 112.2 (3-C) and 60.5 (CH₂).

4b : mp 224°C (DMF). Anal. Calcd for $C_{16}H_{14}NO_2$ I : C, 50.7; H, 3.7; N, 3.7. Found : C, 50.4; H, 3.3; N, 3.9. δ_H (DMSO-d₆) : 9.27 (2H, d, J = 5.9, 2⁻, 6⁻H), 8.71 (1H, t, J = 7.8, 4⁻H), 8.25 (2H, dd, J = 7.8, 5.9, $3'$ -, 5^{\cdot}-H), 7.67 (1H, ill split d, 5-H), 7.54 (1H, dd, J = 8.6, 1.7, 7-H), 7.42 (1H, d, J = 8.6, 8-H), 6.57 (1H, s, 3-H), 5.99 (2H, s, CH₂) and 2.31 (3H, s, Me); δ_C (DMSO-d₆) : 176.6 (4-C), 159.2 (2-C), 153.9 (8a-C), 146.9 (4´-C), 145.6 (2´-, 6´-C), 135.6 (7-C), 135.5 (6-C), 128.5 (3´-, 5´-C), 124.0 (5-C), 122.8 (4a-C), 118.1 (8-C), 111.9 (3-C), 60.4 (CH₂) and 20.4 (Me).

4c : mp. 234°C (DMF). Anal. Calcd for C_1 ₅H₁₁N O₂Cl I. C, 45.1; H, 2.8; N, 3.5. Found : C, 44.8; H, 3.0; N, 3.2. δ_H (DMSO-d₆) : 9.23 (1H, d, J = 5.8, 2⁻-, 6⁻H), 8.70 (1H, t, J = 7.8, 4⁻-H), 8.24 (2H, dd, J = 7.8, 5.8, 3´-, 5´-H), 7.84 (1H, d, J = 2.6, 5´-H), 7.79 (1H, dd, J = 8.9, 2.6, 7-H), 7.62 (1H, d, J = 8.9, 8-H), 6.65

 $(1H, s, 3-H)$ and 6.00 (2H, s, CH₂); δ_C (DMSO-d₆) : 175.6 (4-C), 159.7 (2-C), 154.3 (8a-C), 146.9 (4²-C), 145.7 (2´-, 6´-C), 134.5 (7-C), 130.2 (6-C), 128.5 (3´-, 5´-C), 124.2 (4a-C), 123.6 (5-C), 120.9 (8-C), 112.1 (3-C) and 60.4 (CH₂).

General procedure for the treatment of **4** with acetylenic and olefinic esters

The pyridinium iodide (**4**) (1 mmol) and DMAD or EP (0.2-0.3 mL, 2-3 mmol) were refluxed together in dry acetone (200 mL) containing anhydrous potassium carbonate (-10 g) for 10-12 h, the color of the solution changing from yellow to reddish violet. The solution was filtered hot, the filtrate concentrated, the deposited solid filtered off and crystallised from chloroform-light petroleum. By this method the pyridinium salt (**4**) gave the yellow colored indolizines (**8**) and (**9**) (Tables 1-3) with DMAD and EP, respectively. Similar treatment of **4c** with ethyl acrylate gave in 27% yield a product identical (mp, mixed mp, TLC and IR) with indolizine (**9c**). IR (KBr) for **8a** : 1730 (ester CO), 1697 (ester CO) and 1649 (pyrone CO) cm⁻¹. IR (KBr) for $9c$: 1697 (ester CO) and 1650 (pyrone CO) cm⁻¹.

3-(4-Oxo-4*H*-1-benzopyran-2-yl)indolizine-1-carbonitriles (**10**)

The pyridinium iodide (4) (1 mmol) was reacted with excess acrylonitrile $($ \sim 0.2 mL) similarly as described for the treatment of **4** with acetylenic esters. The filtrate obtained after filtering the reaction mixture gave on concentration an oily mass which was chromatographed over a column of silica gel. The yellow solid material eluted by a mixture of ethyl acetate-light petroleum (1:4) was found to be a mixture of two components having very close R_f values. The relatively more polar component separated by preparative TLC of the above mixture was crystalized from chloroform-light petroleum to yield **10** (Tables 1-3) as shining yellow crystals; the other minor component of the mixture could not be obtained in pure form and it remained unidentified. IR (KBr) for **10a** : 2218 (CN) and 1629 (CO) cm⁻¹. IR (KBr) for **10b** : 2211 (CN) and 1614 (CO) cm^{-1} .

ACKNOWLEDGEMENT

Financial assistance from CSIR, New Delhi is duly acknowledged.

REFERENCES

- 1. C. K. Ghosh, S. K. Karak, and A. Patra, *J. Chem. Res.(S)*, 2002, 311; *J. Chem. Res.(M),* 2002, 741.
- 2. G. P. Ellis and D. Shaw, *J. Med. Chem*., 1972, **15**, 865.
- 3. S. H. Mahal, S. H. Rai, and K. Venkataraman, *J. Chem. Soc*., 1935, **11**, 866.
- 4. T. Uday Kumari, G. L. David Krupadanam, and G. Srimannarayana, *Indian J. Chem*., 1998, **37B**, 847 and references cited therein.
- 5. G. P. Ellis and D. Shaw, *J. Chem. Soc., Perkin Trans. 1*, 1972, 779.
- 6. S. G. Jagadeesh, G. L. David Krupadanam, and G. Srimannarayana, *Indian J. Chem.*, 1997, **36B**, 965.
- 7. J. Schmutz, R. Hirt, and H. Lauener, *Helv. Chim. Acta*, 1952, **35**, 1168.
- 8. V. Boekelheide and K. Fahrenholtz, *J. Am. Chem. Soc*., 1961, **83**, 458.
- 9. R. M. Acheson and N. F. Elmore, 'Advances in Heterocyclic Chemistry : Reactions of Acetylenecarboxylic Esters with Nitrogen-Containing Heterocycles' Vol 23, ed. by A. R. Katritzky and A. J. Boulton, Academic Press, London, 1978, p. 364; Y. Shen, Y. Zhang and G.-F. Jiang, *Synthesis*, 2002, 714 and references therein.
- 10. P. J. Black, M. L. Hefferman, L. M. Jackman, Q. N. Porter, and G. R. Underwood, *Austral. J. Chem*., 1964, **17**, 1128; P. Crews, R. Roy Kintner, and H. C. Padget, *J. Org. Chem.*, 1973, **38**, 4391.
- 11. R. M. Acheson and D. A. Robinson, *J. Chem. Soc.(C)*, 1968, 1633.
- 12. W. Flitsch, 'Comprehensive Heterocyclic Chemistry : Pyrroles with *a*-Fused Six-Membered Heterocyclic Rings', Vol 4, ed. by A.R. Katritzky and C.W. Rees, Pergamon, 1984, p. 449.