SPECTAMINES A AND B, POSSIBLE INHIBITORS OF SUPEROXIDE ANION PRODUCTION OF MACROPHAGES FROM *CASSIA SPECTABILIS*

Tsunashi Kamo,* Kentaro Maehara, Kazuya Sato, and Mitsuru Hirota

Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan. e-mail: kamo274@gipmc.shinshu-u.ac.jp

Abstract – Two novel piperidine alkaloids were isolated from an African legume, *Cassia spectabilis*, and identified as the *O*-benzoyl (**1**, named spectamine A) and *O*-acetyl (**2**, named spectamine B) derivatives of (+)-iso-6-cassine (**3**). The absolute configurations of **1**-**3** were established to be (2*R*,3*R*,6*R*) using the modified Mosher's method. Compound (**1**) inhibited the superoxide anion production of macrophages, while it did not quench the superoxide anion which is produced by xanthine oxidase at a concentration of $25 \mu M$.

Superoxide anion (O_2^-) is one of active oxygens which are produced in human body. The over-production of O_2 ⁻ causes several diseases, such as inflammation, cancer, and hypertension.¹ Scavenging of the over-produced superoxide or depression of the superoxide production would be useful for maintaining a healthy human body condition. There are many reports that radical scavengers such as polyphenols are able to quench the superoxide anion,² however, there are a few reports on the inhibitors of superoxide production.³ We searched for an inhibitor of the superoxide anion production from African plants using the macrophage test and found that the methanolic extract of *Cassia spectabilis,* a Leguminosae plant, suppressed the superoxide production of macrophages. The bioassay-guided isolation from the methanolic extract of this plant by silica gel column chromatography led to two novel piperidine alkaloids, called spectamines A (**1**) and B (**2**).

The ¹H NMR spectrum of **1** was similar to that of $(+)$ -iso-6-cassine (3),⁴ except for the presence of signals assignable to a phenyl group (5H, δ 7.45-8.06 ppm; Table 1). In the ¹³C NMR spectrum of **1**, signals were observed at δ 128.4, 129.6, 130.6 and 132.9 ppm (C₆H₅) and 165.9 ppm (C=O) in addition to those of **3**. These spectra suggested that **1** was an *O*-benzoyl derivative of **3**, which was supported by a molecular ion peak at m/z 401.2963 (C₂₅H₃₉NO₃) in the HREIMS of **1**. Compound (**1**) was converted to **3** by hydrolysis, confirming the assumption (Figure 1). The absolute configuration of **1**, either (2*R*,3*R*,6*R*) or (2*S*,3*S*,6*S*), could not be established by the optical rotation value, since the absolute configuration and the optical rotation values had been contradictory in past studies on $3^{4,5}$ We determined the absolute configuration of **3** using the modified Mosher's method.6 The (*R*)- and (S) -MTPA esters of Boc-3 were prepared from 3 and then their chemical shift values in the ${}^{1}H$ NMR spectra were compared (Figure 2). The δ values at C-2, C-2-Me, C-4 and C-5 revealed that the absolute configuration at C-3 was (*R*), meaning that the absolute configuration of **3** was (2*R*,3*R*,6*R*). Thus, **1** was identified as a novel alkaloid, (2*R*,3*R*,6*R*)-(+)-3-benzoyloxy-2-methyl-6-(11''-oxododecyl)piperidine (spectamine A).

Figure 1. Chemical conversion of **1** and **2** to **3**

Spectamine $A(1)$			Spectamine B (2)	
position	13 C	$\rm ^1H$	13 C	$\rm ^1H$
2	48.8 (CH)	3.41 (1H, qd, $J = 6.8$, 3.9 Hz)	48.4 (CH)	3.27 (1H, qd, $J = 6.8$, 3.5 Hz)
3		72.8 (CH) 5.11 (1H, ddd, $J = 4.4$, 4.1, 3.9 Hz)	72.1 (CH)	4.85 (1H, ddd, $J = 4.3$, 3.8, 3.5 Hz)
$\overline{4}$	24.5 (CH_2)	1.85 (1H, m)	24.4 (CH_2)	1.72 (1H, m)
		1.92 (1H, m)		1.80 (1H, m)
5	26.5 (CH ₂)	1.30 (1H, m)	26.6 $(CH2)$	1.30 (1H, m)
		1.35 (1H, m)		1.36 (1H, m)
6		49.0 (CH) 2.88 (1H, m)	49.3 (CH)	2.84 (1H, m)
2 -CH ₃		14.8 (CH ₃) 1.21 (3H, d, $J = 6.8$ Hz)		14.9 (CH ₃) 1.10 (3H, d, $J = 6.8$ Hz)
	$3-O-C(=O) - 165.9(C)$		170.6 (C)	
1^{\prime}	130.6 (C)			21.3 (CH ₃) 2.07 (3H, s)
2', 6'	129.6 (CH)	8.06 (2H, d, $J = 7.3$ Hz)		
3', 5'		128.4 (CH) 7.45 (2H, dd, $J = 7.4$, 7.3 Hz)		
4'		132.9 (CH) 7.56 (1H, t, $J = 7.4$ Hz)		
1"		34.6 (CH ₂) 1.30 (1H, m)		34.1 (CH_2) 1.30 $(1H, m)$
		1.58 (1H, m)		1.44 (1H, m)
$2" - 8"$	29.4-29.8 (CH ₂) 1.27 (14H, m)		29.2-29.7 (CH ₂) 1.27 (14H, m)	
9"		23.9 (CH ₂) 1.57 (2H, m)		23.9 (CH ₂) 1.56 (2H, m)
10"		43.8 (CH ₂) 2.41 (2H, t, $J = 7.5$ Hz)		43.8 (CH ₂) 2.41 (2H, t, $J = 7.4$ Hz)
11"	209.4(C)		209.3 (C)	
12"		29.9 (CH ₃) 2.13 (3H, s)		29.8 (CH ₃) 2.13 (3H, s)

Table 1. ¹H and ¹³C NMR spectral data for **1** and **2** (500 MHz for ¹H and 125 MHz for ¹³C, CDCl₃)

Figure 2. Differences in proton chemical shift (ppm) between the (*S*)- and (*R*)-MTPA esters of Boc-**3**. Underlined values: (δ value from 1 H NMR spectrum of the (*S*)-MTPA ester of Boc-3) - (δ value from ¹H NMR spectrum of the (*R*)-MTPA ester of Boc-3)

Absolute configuration	$\lceil \alpha \rceil_D$	Method used for determination
(2R, 3R, 6R)	-3.3° (c 0.26, CHCl ₃)	Horeau's process
(2R, 3R, 6R)	$+1.5^{\circ}$ (c 1.22, CHCl ₃)	the modified Mosher's method
(2S, 3S, 6S)	-1.5° (c 1.50, CHCl ₃)	asymmetric synthesis

Table 2. The $\alpha|_D$ values and the absolute configurations of natural and synthesized 3

The ¹H NMR spectrum of **2** was similar to that of **1**, except for another singlet (3H, δ 2.07 ppm; Table 1) assignable to an acetyl group instead of the benzoyl group. The 13C NMR spectrum of **2** showed signals at δ 21.3 ppm (CH₃) and 170.6 ppm (C=O) in addition to those of **3**, suggesting that **2** was an *O*-acetyl derivative of **3**. A molecular ion peak at *m/z* 399.2762 in the HREIMS of **2**, suggesting a molecular formula of $C_{20}H_{37}NO_3$, supported the structure. Hydrolysis of 2 gave 3 whose optical rotation value, [$α$]³⁰_D +1.4° (*c* 1.97, CHCl₃), was almost equal to that of **3** prepared from **1**, $[α]$ ³⁰_D +1.5° (*c* 1.22, CHCl₃), indicating that the absolute configuration of **2** was also (2*R*,3*R*,6*R*). These observations proved that **2** was a novel alkaloid, $(2R,3R,6R)$ -(+)-3-acetoxy-2-methyl-6-(11"-oxododecyl)piperidine (spectamine B). Christofidis *et al.* reported the isolation and identification of **3**, $[\alpha]_D^{25}$ -3.3° (*c* 0.26, CHCl₃), from *C*. *spectabilis*, and determined its absolute configuration to be $(2R,3R,6R)$ by Horeau's process (Table 2).⁴ The asymmetric synthesis of (2*S*,3*S*,6*S*)-**3**, which corresponded to the enantiomer of the natural **3**, was achieved by Toyooka *et al.*⁵ The $[\alpha]_D^{25}$ value of the synthesized (2*S*,3*S*,6*S*)-3 was -1.5° (*c* 1.50, CHCl₃), which should have been $+3.3^{\circ}$ if that of natural **3** was correct. In the present paper, we described the isolation of **3** as the *O*-benzoyl and *O*-acetyl derivatives (**1** and **2**, respectively), and the identification of its absolute configuration as $(2R,3R,6R)$ using the modified Mosher's method. The $\lceil \alpha \rceil_D$ values and the absolute configuration we described were well correlated with those of Toyooka *et al.*,⁵ suggesting that the $\lceil \alpha \rceil_D$ value of the previously reported natural **3** was incorrect.⁴ A trace of impurity might have produced a bad effect on the optical rotation value of **3** in their experiment.

The inhibitory activities of the superoxide production of **1**-**3** were evaluated using both the xanthine oxidase (XOD) test and the macrophage test.⁷ As shown in Table 3, a radical scavenger, quercetin,

quenched 30.9% and 72.3% of the superoxide which was produced by XOD, at 25 and 125 µM, respectively, while **1**-**3** showed slight activities at 25 and 125 µM during the XOD test. For the macrophage test, **1** showed the strongest activity and suppressed 46.7% of the superoxide production at 25 µM, although its activity to quench the superoxide anion was weak. Compound (**1**) might be a specific inhibitor of the superoxide production of macrophages.

		$%$ Inhibitory activity (\pm Standard deviation)			
	XOD test		Macrophage test		
Tested compound	$25 \mu M$	125 µM	$25 \mu M$		
spectamine $A(1)$	8.7 (± 3.4)	15.1 (± 6.0)	46.7 (± 13.2)		
spectamine B (2)	2.5 (± 4.7)	$-1.9 \ (\pm 7.4)$	5.0 (± 9.9)		
$(+)$ -iso-6-cassine (3)	$-0.7 \ (\pm 3.5)$	4.8 (± 15.5)	7.0 (± 5.4)		
quercetin*	30.9 (± 8.4)	72.3 (± 1.6)	19.0 (± 7.5)		

Table 3. Inhibitory activities of **1**-**3** against the superoxide production by xanthine oxidase (XOD) and macrophage

*A positive control in the XOD and the macrophage tests.

ACKNOWLEDGEMENTS

We thank Ms. M. Mizu and Ms. K. Hashimoto for providing the NMR spectra.

REFERENCES AND NOTES

- 1. N. Kaul and H. J. Forman, 'Toxicology of the Human Environment,' ed. by C. J. Rhodes, Taylor & Francis Ltd., London, 2000, pp. 311-335.
- 2. A. Kaul and K. L. Khanduja, *Nutr Cancer.*, 1999, **35**, 207; V. A. Kostyuk and A. I. Potapovich, *Arch. Biochem. Biophys.*, 1998, **355**, 43.
- 3. A. Murakami, Y. Nakamura, K. Torikai, T. Tanaka, T. Koshiba, K. Koshimizu, S. Kuwahara, Y. Takahashi, K. Ogawa, M. Yano, H, Tokuda, H, Nishino, Y. Mimaki, Y. Sashida, S. Kitanaka, and H. Ohigashi, *Cancer Res.*, 2000, **60**, 5059; O. K. Kim, A. Murakami, Y. Nakamura, N. Takeda, H. Yoshizumi, and H. Ohigashi, *J. Agric. Food Chem.*, 2000, **48**, 1557.
- 4. I. Christofidis, A. Welter, and J. Jadot, *Tetrahedron*, 1977, **33**, 977.
- 5. N. Toyooka, Y. Yoshida, Y. Yotsui, and T. Momose, *J. Org. Chem.*, 1999, **64**, 4914.
- 6. I. Ohtani, T. Kusumi, Y. Kashman, and H. Kakisawa, *J. Am. Chem. Soc.*, 1991, **113**, 4092.
- 7. The XOD method was partly owing to the report by H. Imai, M. Hashimoto, and Y. Nakabayashi, *Bunseki Kagaku*, 1994, **43**, 51 (in Japanese). The bioassays will be described in detail elsewhere.