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Abstract –New strategy to develop antiviral agents against HIV and herpes virus

from the derivatization of peptide nucleic acid monomers has been described.

Many antivirals are focused on the inhibition of viral polymerases and reverse transcriptases, which are

the key enzymes in the replicative cycle of any virus for chemotherapy.1 Most available drugs of aciclovir,

and AZT are nucleoside analogues, and extensive research towards derivatisation on the sugar moiety of

natural nucleoside to enhance antiviral activity has been carried out in numerous laboratories.2 On the

other hand, aminoethylglycine peptide nucleic acids (aegPNAs),3 reported in 1991 by Nielsen, is a nucleic

acid analogue in which the sugar-phosphate backbone is replaced by peptide linkage. Many kinds of

nucleotides have been synthesized in order to improve the binding specificity to DNA and RNA,

solubility and uptake into cells.4 However there is no report on the derivatization of PNA monomers,

which are potent isosters of natural nucleoside, in order to explore new antivirals. In this communication,

we report on the preparation of PNA monomer derivatives (3a,b) and (15) with hydroxyl group in

backbone, which is an important group for the phosphorylation by cellular kinases in the activation

mechanism of antiviral nucleoside analogues, of isogaPNA5 and proPNA6 developed in our laboratory.



   
The synthesis of 3-hydroxy-1-(thymin-1-ylmethyl)propylamine (3a,b) proceeds through benzyl ester

compounds (1a,b),5 which are intermediates of isogaPNA monomers (Scheme 1). Removal of benzyl

group of 1a,b with H2 in the presence of 10% Pd-C followed by reduction of carboxylic compounds

(2a,b) with ethyl chloroformate and sodium borohydride provided our objective compounds (3a,b).7,8 We

also prepared Boc- and Fmoc-protected isogaPNA monomers (7a,b) and (8a,b) for the comparison with

hydroxyl compounds (3a,b). After removal of Boc group of 1a,b with conc. HCl, coupling with N-

protected glycine followed by deprotection of benzyl group by use of 1, 4-cyclohexadiene and 10% Pd-C

afforded 7a,b and 8a,b.

4-Hydroxy-L-proline was used as a starting material for the preparation of 1-(4-hydroxypyrrolidin-2-

ylmethyl)thymine (15) (Scheme 2). After conversion from 4-hydroxy-L-proline to compound (9)

according to the method of Lowe and Stille,9 THP protection of secondary hydroxyl group of 9, reduction

of ethyl ester of compound (10) with LiBH4 and tosylation of primary hydroxyl group of compound (11)

followed by coupling between 12 and 3-benzoylthymine provided THP and Boc protected compound (13).

After debenzoylation of 13 under basic condition, treatment of compound (14) with TFA gave hydroxyl

compound (15).10 Alternatively, compound (15) was prepared by treatment of 13 with TFA.
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AntiHIV-1 and antiHSV-1 activities of hydroxyl compounds (3) and (15), isogaPNA monomers (7) and

(8), and the intermediate (2, 4, 6, 7, and 14) were examined by use of Lenti RT activity kit of
CAViDiTECH and plaque reduction assay with HSV-1 and Vero cells,11 respectively. Unfortunately, the

antiviral activities against HIV-1 and HSV-1 were not observed in these assays. However, interestingly

compound (8b) (50 mg/mL) derived from L-aspartic acid only showed potent cytotoxicity on Vero cells

that was not shown by compound (8a) derived from D-aspartic acid. The chilarity of molecules is one of
the important factors to show pharmacological activities. Therefore, it seems to be a merit to develop new
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antiviral drugs that the construction of chiral backbone of PNA monomers is relatively easy because of
derivatization from chiral amino acids. Versatile derivatization from PNA monomers is worthy of further

exploration.
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