## SPECTROSCOPIC ANALYSIS OF IMIDAZOLIDINES: PART IV:<sup>13</sup>C-NMR SPECTROSCOPY

Isabel A. Perillo,\* Graciela Buldain, and Alejandra Salerno

Department of Organic Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956 (1113), Buenos Aires, Argentina. E-mail: iperillo@ffyb.uba.ar.

**Abstract**- <sup>13</sup>C NMR spectra of a series of 1,3-di- and 1,2,3-trisubstituted imidazolidines with aryl, alkyl and aralkyl groups are analyzed and their spectroscopic parameters correlated with conformational features. Assignments were confirmed by means of two dimensional spectra of heteronuclear correlation HMQC and HMBC. Heterocyclic carbons are highly influenced by the nature of the substituent on adjacent nitrogen. Thus, carbon atoms adjacent to a nitrogen substituted with an alkyl or aralkyl group appear in the spectrum at  $\delta$  *ca*. 53 ppm as double doublets with <sup>1</sup>*J*<sub>C-H</sub> 134 and 145 Hz, due to a definite orientation of the substituent. Instead, carbon atoms adjacent to an *N*-aryl group appear at higher fields ( $\delta$  *ca*. 47 ppm) as triplets with <sup>1</sup>*J*<sub>C-H</sub> *ca*. 141-143 Hz.

## **INTRODUCTION**

<sup>1</sup>H NMR spectra of imidazolidines with different substitution patterns and their correlation with conformational features were widely studied by our group<sup>1,2</sup> as well as by other authors.<sup>3-5</sup> However data on <sup>13</sup>C NMR studies are scarce in the literature and limited to *N*,*N*<sup>2</sup>-dimethylimidazolidine,<sup>3</sup> 1,3-diaryl-4-methyl derivatives,<sup>6</sup> 1,3-dihydroxyimidazolidines<sup>7</sup> and 3-alkyl-1,4-dimethyl-5-phenyl derivatives.<sup>4</sup>

Pursuing our research on the spectroscopic properties of imidazolidines,<sup>1,2,8</sup> we present in this work the analysis of <sup>13</sup>C NMR spectra of a series of imidazolidines with different substitution patterns (Table 1), specially in regard to the influence of substituents on nitrogen atoms ( $R_1$  and  $R_3$ ) and C2 ( $R_2$ ), and discuss their conformational implications.

Chemical shifts of compounds (1-24) were assigned taking into account the analysis of signal multiplicity and coupling constant values and compairing different terms of the series. Assignments were unequivocally confirmed in some cases by two dimensional spectra of heteronuclear correlation HMQC and HMBC.

| Imidazolidines ( <b>1-24</b> ) |                                                                          |                                                          |                                                                          |  |  |  |  |
|--------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| $R_1 - N - R_3$                |                                                                          |                                                          |                                                                          |  |  |  |  |
| H R <sub>2</sub>               |                                                                          |                                                          |                                                                          |  |  |  |  |
| Compd                          | R <sub>1</sub>                                                           | $\mathbf{R}_2$                                           | R <sub>3</sub>                                                           |  |  |  |  |
| 1                              | CH <sub>3</sub>                                                          | CH <sub>3</sub>                                          | CH <sub>3</sub>                                                          |  |  |  |  |
| 2                              | CH <sub>3</sub>                                                          | $C_6H_5$                                                 | CH <sub>3</sub>                                                          |  |  |  |  |
| 3                              | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | CH <sub>3</sub>                                          | p-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub>         |  |  |  |  |
| 4                              | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | CH=CHC <sub>6</sub> H <sub>5</sub>                       | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> |  |  |  |  |
| 5                              | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | $C_6H_5$                                                 | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> |  |  |  |  |
| 6                              | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | m-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>          | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> |  |  |  |  |
| 7                              | <i>p</i> -ClC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub>                | m-ClC <sub>6</sub> H <sub>4</sub>                        | <i>p</i> -ClC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub>                |  |  |  |  |
| 8                              | $C_6H_5CH_2$                                                             | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | $C_6H_5CH_2$                                                             |  |  |  |  |
| 9                              | $CH_3$                                                                   | $C_6H_5$                                                 | $CH(CH_3)_2$                                                             |  |  |  |  |
| 10                             | $C_6H_5$                                                                 | Н                                                        | $C_6H_5$                                                                 |  |  |  |  |
| 11                             | p-ClC <sub>6</sub> H <sub>4</sub>                                        | Н                                                        | p-ClC <sub>6</sub> H <sub>4</sub>                                        |  |  |  |  |
| 12                             | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                          | Н                                                        | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                          |  |  |  |  |
| 13                             | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                 | Н                                                        | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                 |  |  |  |  |
| 14                             | $C_6H_5$                                                                 | CH <sub>3</sub>                                          | $C_6H_5$                                                                 |  |  |  |  |
| 15                             | $C_6H_5$                                                                 | $C_6H_5$                                                 | $C_6H_5$                                                                 |  |  |  |  |
| 16                             | $C_6H_5$                                                                 | Н                                                        | CH <sub>3</sub>                                                          |  |  |  |  |
| 17                             | $C_6H_5$                                                                 | $C_6H_5$                                                 | CH <sub>3</sub>                                                          |  |  |  |  |
| 18                             | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                 | $C_6H_5$                                                 | CH <sub>3</sub>                                                          |  |  |  |  |
| 19                             | p-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                          | $C_6H_5$                                                 | CH <sub>3</sub>                                                          |  |  |  |  |
| 20                             | p-ClC <sub>6</sub> H <sub>4</sub>                                        | $C_6H_5$                                                 | CH <sub>3</sub>                                                          |  |  |  |  |
| 21                             | p-ClC <sub>6</sub> H <sub>4</sub>                                        | Н                                                        | $CH_2C_6H_5$                                                             |  |  |  |  |
| 22                             | p-ClC <sub>6</sub> H <sub>4</sub>                                        | $C_6H_5$                                                 | $CH_2C_6H_5$                                                             |  |  |  |  |
| 23                             | p-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                          | o-ClC <sub>6</sub> H <sub>4</sub>                        | $CH_2C_6H_5$                                                             |  |  |  |  |
| 24                             | p-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                          | <i>p</i> -CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | $CH_2C_6H_5$                                                             |  |  |  |  |
|                                | 1                                                                        |                                                          |                                                                          |  |  |  |  |

Table 1

## **RESULTS AND DISCUSSION**

# 1,3-Dialkyl(or dibenzyl)imidazolidines (Table 2)

Assignments of <sup>13</sup>C NMR spectra of 1,3-dibenzylimidazolidines were performed on the basis of HMQC and HMBC spectra of compound (6). Single-bond and long-range proton-carbon correlations are

presented in Table 3. Such spectra enabled us to unambiguously assign ethylene carbon signal (C4 and C5,  $\delta$  50.7 ppm) which directly correlates with hydrogens of the AA'XX' system ( $\delta$  2.55 and 3.15 ppm), and benzyl carbon signal ( $\delta$  56.3 ppm) which correlates with diasterotopic benzyl hydrogen doublets (3.27 and 3.62 ppm).<sup>2</sup>

|              |                                | 8                                                                                          | , , ,                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|--------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | R <sub>1</sub>                 | $-N_{H} R_{2} R_{2}$                                                                       | $\begin{array}{c} & & & & & & \\ R_1 \text{ and } R_3 = H_2 C_{-7} & & & & \\ & & & & \\ & & & & \\ 6 & 7 & 8,9 & 8 & 9 \\ CH_3, CH(CH_3) \end{array}, R  ,$ | $R_{2} = \underbrace{\begin{array}{c} 16 & 15 \\ 12 & 14 \end{array}}_{12 & 13} X_{14},$ $R_{2} = \underbrace{\begin{array}{c} 16 & 15 \\ 14 & 14 \end{array}}_{12 & 13} X_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 12 & 13 \end{array}}_{14 & 15} I_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14 & 15} I_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14 & 15} I_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14 & 15} I_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14 & 15} I_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{14},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{15},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{15},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{15},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{15},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{15},$ $R_{2} = \underbrace{\begin{array}{c} 11 & 12 \\ 14 & 15 \end{array}}_{14} I_{15},$ |
| Compd        | C2                             | C4 C5                                                                                      |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1            | 82.9, d                        | 53.0, dd                                                                                   | 39.2 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 134.3, Сб)                                                                                                   | 15.2 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 127.0, С11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | ${}^{1}J_{\text{C-H}}$ : 134.2 | ${}^{1}J_{\text{C-H}}$ : 132.2, ${}^{1}J_{\text{C-H}}$ : 143.2                             |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                | [a]                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2            | 92.0, d                        | 52.9, dd                                                                                   | 39.2, (q, <sup>1</sup> <i>J</i> <sub>С-H</sub> : 134.2, Сб)                                                                                                  | 139.3 (t, ${}^{3}J_{C-H}$ : 6.8; C11), 127.2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | ${}^{1}J_{\text{C-H}}$ : 134.2 | ${}^{1}J_{\text{C-H}}$ : 132.1, ${}^{1}J_{\text{C-H}}$ : 143.9                             |                                                                                                                                                              | 128.1 and 128.4 (C12-14) [c]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | [b]                            | [b]                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3            | 81.0, d                        | 50.1, dd                                                                                   | 56.8 (t, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 132.2, C6); 130.2 (s, C7);                                                                                   | 18.1 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 128.2, C11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | $^{1}J_{\text{C-H}}$ : 136.0   | <sup>1</sup> <i>J</i> <sub>С-H</sub> : 133.0, <sup>1</sup> <i>J</i> <sub>С-H</sub> : 144.3 | 130.7 (d, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 161.6, C8); 113.5 (dd,                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                |                                                                                            | ${}^{1}J_{\text{C-H}}$ : 158.2, ${}^{3}J_{\text{C-H}}$ : 4.5, C9); 158.5 (s,                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                |                                                                                            | C10); 55.3 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 143.5, OCH <sub>3</sub> )                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4            | 87.8, d                        | 50.3, dd                                                                                   | 56.2 ( t, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 132.7, C6); 131.0 (s, C7);                                                                                  | 130.3 (d, ${}^{1}J_{C-H}$ : 154.3, C11); 136.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | ${}^{1}J_{\text{C-H}}$ : 134.7 | ${}^{1}J_{\text{C-H}}$ : 132.6, ${}^{1}J_{\text{C-H}}$ : 143.7                             | 129.9 (d, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 159.2, C8); 113.4 (dd,                                                                                      | (d, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 155.1, C12); 135.5 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                |                                                                                            | ${}^{1}J_{\text{C-H}}$ : 158.3, ${}^{3}J_{\text{C-H}}$ : 5.1, C9); 158.5 (s,                                                                                 | C13); 127.8 and 128.5 (C14,15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                |                                                                                            | C10); 55.1 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 144.2, OCH <sub>3</sub> )                                                                              | [c]; 126.2 (t, ${}^{3}J_{C-H}$ : 6.2, C16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5            | 88.8, d                        | 50.4, dd                                                                                   | 56.1 (t, ${}^{1}J_{C-H}$ : 132.7, C6); 131.2 (s, C6);                                                                                                        | 140.3 (s, C11); 128.1, 128.5 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | ${}^{1}J_{\text{C-H}}$ : 134.5 | ${}^{1}J_{\text{C-H}}$ : 133.1, ${}^{1}J_{\text{C-H}}$ : 142.4                             | 129.6 (d, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 159.7, C8); 113.4 (dd,                                                                                      | 129.4 (C12-14) [c]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                |                                                                                            | ${}^{1}J_{\text{C-H}}$ : 157.2, ${}^{3}J_{\text{C-H}}$ : 4.6, C9); 158.4 (s,                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                |                                                                                            | C10); 55.2 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 144.1, OCH <sub>3</sub> )                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>6</b> [d] | 87.7, d                        | 50.7, dd                                                                                   | 56.3 (t, ${}^{1}J_{C-H}$ : 131.9, C6); 130.5 (s, C7);                                                                                                        | 143.9 (s, C11); 124.4 (d, <sup>1</sup> <i>J</i> <sub>С-H</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | ${}^{1}J_{\text{C-H}}$ : 135.1 | ${}^{1}J_{\text{C-H}}$ : 132.7, ${}^{1}J_{\text{C-H}}$ : 144.1                             | 129.5 (d, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 154.7, C8); 113.5 (dd,                                                                                      | 156, C12); 148.2 (d, ${}^{3}J_{C-H}$ : 6.2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                |                                                                                            | ${}^{1}J_{\text{C-H}}$ : 159.0, ${}^{3}J_{\text{C-H}}$ : 4.1, C9); 158.6 (s,                                                                                 | C13); 123.4 (d, ${}^{1}J_{C-H}$ : 159.3, C14);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                |                                                                                            | C10); 55.2 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 143.8, OCH <sub>3</sub> )                                                                              | 128.9 (d, ${}^{1}J_{C-H}$ : 156.2, C15); 135,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                |                                                                                            |                                                                                                                                                              | (d, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 157.3, C16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7            | 88.2, d                        | 50.6, dd                                                                                   | 56.1 (t, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 133.2, C6); 137.3 (s, C7);                                                                                   | 142.6 (s, C11); 134.2 (s, C13) [e]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | ${}^{1}J_{\text{C-H}}$ : 136.0 | <sup>1</sup> <i>J</i> <sub>C-H</sub> : 133.2, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 144.5 | 132.5 (s, C10) [e]                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Table 2 |  |  |
|---------|--|--|
|         |  |  |

<sup>13</sup>C Chemical Shift Assignments of 1,3-Dialky(or benzyl)imidazolidines (δ: ppm; *J*: Hz)

| 8 | 88.5, d                                      | 50.4                                         | 4, dd                                          | 56.8 (t, ${}^{1}J_{C-H}$ : 132.4, C6); 139.2 (s, C7);                | 132 (s, C11); 130.5 (dd, <sup>1</sup> <i>J</i> <sub>С-H</sub> :     |
|---|----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
|   | ${}^{1}J_{\text{C-H}}$ : 135.2               | ${}^{1}J_{\text{C-H}}$ : 132.9               | , <sup>1</sup> <i>J</i> <sub>С-н</sub> : 144.7 | 128.0 (d, ${}^{1}J_{C-H}$ : 155.9 and 128.5 (d,                      | 159.4, <sup>3</sup> <i>J</i> <sub>С-H</sub> : 5.1, С12); 113.5 (dd, |
|   |                                              |                                              |                                                | ${}^{1}J_{C-H}$ :154.8, C8,9); 126.7 (dt, ${}^{1}J_{C-H}$ :154.8,    | ${}^{1}J_{\text{C-H}}$ : 159.3, ${}^{3}J_{\text{C-H}}$ : 4.5, C13); |
|   |                                              |                                              |                                                | ${}^{3}J_{\text{C-H}}$ 6.1, C10)                                     | 159.8 (s, C14); 55.2 (q, <sup>1</sup> <i>J</i> <sub>С-H</sub> :     |
|   |                                              |                                              |                                                |                                                                      | 143.9, OCH <sub>3</sub> )                                           |
| 9 | 86.6, d                                      | 47.9, dd                                     | 53.1, dd                                       | 38.9 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 134.5, C6); 43.6 (d, | 141.8 (t, ${}^{3}J_{C-H}$ : 6.8, C11); 127.8,                       |
|   | <sup>1</sup> <i>J</i> <sub>С-H</sub> : 134.2 | ${}^{1}J_{\text{C-H}}$ : 132.4               | ${}^{1}J_{\text{C-H}}$ : 132.9                 | ${}^{1}J_{C-H}$ : 131.2, C7); 15.5 (q, ${}^{1}J_{C-H}$ : 132.1       | 128.1, 128.6 (C12-14) [c]                                           |
|   |                                              | <sup>1</sup> <i>J</i> <sub>С-н</sub> : 142.9 | ${}^{1}J_{\text{C-H}}$ : 143.1                 | and 22.0, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 131.3, C8,9)        |                                                                     |

[a] Lit.  ${}^{1}J_{C4,5-H}$ : 132.0, 142.9 Hz.<sup>5</sup> [b] Lit.  ${}^{1}J_{C2-H}$ : 134.0 Hz;  ${}^{1}J_{C4,5-H}$ : 132.0, 142.0 Hz.<sup>5</sup> [c] Due to the overlapping of signals in the coupled spectra, coupling constants could not be calculated. [d] Signals were unequivocally assigned by HMQC and HMBC spectra. [e] C8,9,12,14-16: 127.5, 128.3, 128.9, 129.4, 129.5 and 129.7 (not assigned signals).

The C4 and C5 signals in 1,3-dibenzyl derivatives (**3-8**) appear at  $\delta$  *ca*. 50 ppm, shifted to higher fields than in 1,3-dimethyl derivatives (**1**, **2**) ( $\delta$  *ca* 53 ppm) and are almost not influenced by the nature of C2 substituents (CH<sub>3</sub>, Ar). The observed shielding was attributed to the influence of the aryl group on *gamma* position, and it is similar to that observed in phenylalkanes.<sup>9</sup> In both series, C2 undergoes an expected paramagnetic shift (*ca*. 8 ppm) when C2-methyl is changed by an aryl or substituted vinyl group. However, in compounds (**5-8**) chemical shifts (*ca*. 88 ppm) failed to show substantial variations with the different substituents on the 2-aryl group.

The dependence of the lone-pair orientation on NMR coupling constant renders the  ${}^{1}J_{C-H}$  values, an important means to obtain conformational information of molecules. Lowest constants (*ca.* 135 Hz) are associated to coupling between carbons and hydrogen atoms which present lone pairs in *trans* to the C-H bond, while values of *ca.* 144 and 154 Hz correspond to coupling with hydrogens having contribution of one or two lone pairs in *cis* to the C-H bond<sup>1,4,5</sup> respectively. For compounds (**1-8**)  ${}^{1}J_{C2-H}$  were around 134-137 Hz, indicating the influence of two lone pairs trans to C2-H, thus determining for itself the transoid distribution of substituents on N1, C2 and N3 (Scheme 1). This result is coincident with that obtained from NOESY spectrum previously reported by us for 1,3-dibenzyl derivatives.<sup>2</sup> On the other hand, C4,5 appear as double doublets ( ${}^{1}J_{C-H}$  *ca.* 134 and 145 Hz) corresponding to coupling with hydrogens in *trans* (Hb,d) and *cis* (He,c) to lone pairs respectively (Scheme 1).

Scheme 1



#### Table 3

HMQC Single-bond and HMBC Long-range Proton-carbon Correlations of Compound (6)



| C<br>δ (ppm) | Proton single bond<br>coupling<br>δ (ppm) | Proton three bond coupling<br>δ (ppm) | Proton two bond coupling<br>δ (ppm) |
|--------------|-------------------------------------------|---------------------------------------|-------------------------------------|
| 50.7 (C4,5)  | 2.55 and 3.15 (H4,5)                      | 3.27 and 3.62 (H6), 3.92 (H2)         | 2.55, 3.15 (H4,5)                   |
| 55.2 (C17)   | 3.75 (H17)                                | -                                     | -                                   |
| 56.3 (C6)    | 3.27 and 3.62 (H6)                        | 2.55 and 3.15 (H4,5), 3.92 (H2),      | -                                   |
|              |                                           | 7.08 (H8)                             |                                     |
| 87.7 (C2)    | 3.92 (H2)                                 | 3.27 and 3.62 (H6), 3.15 (H4,5),      | -                                   |
|              |                                           | 8.34 (H12), 7.80 (H16)                |                                     |
| 113.5 (C9)   | 6.74 (H9)                                 | -                                     | 7.08 (H8)                           |
| 123.4 (C14)  | 8.12 (H14)                                | 7.80 (H16), 8.34 (H12)                | 7.49 (H15)                          |
| 124.4 (C12)  | 8.34 (H12)                                | 3.92 (H2), 7.80 (H16), 8.12 (H14)     | -                                   |
| 128.9 (C15)  | 7.49 (H15)                                | -                                     | 7.80 (H16)                          |
| 129.5 (C8)   | 7.08 (H8)                                 | 3.27 and 3.62 (H6)                    | 6.74 (H9)                           |
| 130.5 (C7)   | -                                         | 6.74 (H9)                             | 7.08 (H8), 3.27 and 3.62 (H6)       |
| 135.4 (C16)  | 7.80 (H16)                                | 8.12 (H14), 8.34 (H12), 3.92 (H2)     | 7.49 (H15)                          |
| 143.9 (C11)  | -                                         | 7.49 (H15)                            | 3.92 (H2)                           |
| 148.2 (C13)  | -                                         | 7.49 (H15)                            | 8.12 (H14), 8.34 (H12)              |
| 158.6 (C10)  | -                                         | 3.75 (H17), 7.08 (H8)                 | 6.74 (H9)                           |
|              |                                           |                                       |                                     |

The comparison of the spectra of compounds (2) and (9) discloses that the substitution of a methyl group on one nitrogen for an isopropyl, induces differentiation between C4 and C5, which appear at 47.9 and 53.1 ppm respectively. C2 chemical shift was the most affected by such change as well as one of the ethylene carbons, which undergo a similar upfield shift (*ca*. 5 ppm). This fact suggests a geometric  $\gamma$ gauche relationship between isopropyl methyl groups and imidazolidine ring carbons bonded to nitrogen carrying the isopropyl group, thus allowing us to assign the signal at 47.9 ppm to C4. However, isopropyl methyl groups do not exert a  $\delta$  deshielding effect on C5, as it was observed in other imidazolidines.<sup>6</sup> Like in compounds (**1-8**),  ${}^{1}J_{C-H}$  coupling constants denote a transoid arrangement between substituents ( ${}^{1}J_{C2-H}$  134.2 Hz,  ${}^{1}J_{C4-H}$  132.4 and 142.9 Hz,  ${}^{1}J_{C5-H}$  132.9 and 143.1 Hz). Characteristically, compound (**9**) presents anisocronous isopropyl methyl groups, being diasterotopicity caused by the presence of the C2. prochiral center.

## 1,3-Diarylimidazolidines (Table 4)

<sup>13</sup>C-NMR spectra of C2-unsubstituted 1,3-diarylimidazolidines (**10-13**) display C2 at 65.6-67.3 ppm while C4 and C5 appear as a sole signal at 46.4-47.2 ppm, almost independent of the *para* substituent on the aryl group.

The comparison of compounds (10) and (14), shows that replacement of a hydrogen on C2 by a methyl group induces a downfield shift of C2 signal (2.5 ppm), and an upfield shift of C4 and C5 signals (-3 ppm). Such upfield shift observed for heterocyclic ethylene carbons as well as the deshielding of attached protons  $(0.10 \text{ ppm})^1$  is attributed to a  $\gamma$  effect of C2 substituent, and would indicate a preferential gauche arrangement of C2 methyl group and C4 and C5, as it is displayed in the Newman projection seen through C2-N bond (Scheme 2). Instead, in the 1,2,3-triphenylimidazolidine (15), C4 and C5 chemical shifts are not significantly modified respect to the C2 unsubstituted compound (10).

Scheme 2



In comparison to the previous series, all heterocyclic carbon signals of 1,3-diarylimidazolidines are upfield shifted. It could be expected that the decrease in electron density on imidazolidine ring caused by the conjugation of the aniline system (*N*-aryl) would exert a paramagnetic effect. Thus, the observed diamagnetic effect must be associated to a decrease in the C-N bond order, so that the balance between both effects is responsible for the shielding observed in the signal of carbons bonded to nitrogen atoms. A similar effect was reported in other nitrogen heterocyclic systems,<sup>10</sup> when ring electron density decreased and polarization effects were overpassed by a diminution in bond order, leading to an effective upfield shift of the C $\alpha$  to the heteroatom.

For this series of compounds, C4 and C5 appear in all cases as triplets ( ${}^{1}J_{C-H}$  141-145 Hz). This value cannot be associated to a definite orientation of the lone pair, due to the *N*-aryl inversion.<sup>11</sup> It could be better related to the inductive effect resulting from the low electron density on *N*-aryl.

#### Table 4

<sup>13</sup>C Chemical Shift Assignments of 1,3-Diarylimidazolidines (δ: ppm; *J*: Hz)

|       | $R_1 - N_2$                    | $N-R_3$                        | $R_1$ and $R_3 = -6$                                                                                             | $R_2 = CH_3, -10$                                      |
|-------|--------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|       | 11                             | R <sub>2</sub>                 |                                                                                                                  | 11 12                                                  |
| Compd | C2                             | C4,5                           |                                                                                                                  |                                                        |
| 10    | 65.6, t                        | 46.7, t                        | 146.2 (t, ${}^{3}J_{C-H}$ : 8.1, C6); 112.3 (dt, ${}^{1}J_{C-H}$ :                                               |                                                        |
|       | ${}^{1}J_{\text{C-H}}$ : 149.2 | ${}^{1}J_{\text{C-H}}$ : 141.6 | 155.8, ${}^{3}J_{\text{C-H}}$ : 6.1, C7); 129.1 (dd, ${}^{1}J_{\text{C-H}}$ : 155.8,                             |                                                        |
|       |                                |                                | ${}^{3}J_{\text{C-H}}$ : 6.1, C8); 117.4 (dt, ${}^{1}J_{\text{C-H}}$ : 161.0, ${}^{3}J_{\text{C-H}}$ :           |                                                        |
|       |                                |                                | 7.4, C9)                                                                                                         |                                                        |
| 11    | 65.7, t                        | 46.4, t                        | 144.6 (t, ${}^{3}J_{C-H}$ : 8.9, C6); 113.3 (dd, ${}^{1}J_{C-H}$ :                                               |                                                        |
|       | ${}^{1}J_{\text{C-H}}$ : 148.7 | ${}^{1}J_{\text{C-H}}$ : 144.6 | 159.9, ${}^{3}J_{C-H}$ : 5.9, C7); 129.0 (dd, ${}^{1}J_{C-H}$ : 164.5,                                           |                                                        |
|       |                                |                                | ${}^{3}J_{\text{C-H}}$ : 5.7, C8); 122.6 (t, ${}^{3}J_{\text{C-H}}$ : 7.1, C9)                                   |                                                        |
| 12    | 66.3, t                        | 46.4, t                        | 144.4 (t, ${}^{3}J_{C-H}$ : 8.7, C6); 112.4 (dd, ${}^{1}J_{C-H}$ :                                               |                                                        |
|       | ${}^{1}J_{\text{C-H}}$ : 145.5 | ${}^{1}J_{\text{C-H}}$ : 145.5 | 162.1, ${}^{3}J_{C-H}$ : 5.3, C7); 129.6 (dd, ${}^{1}J_{C-H}$ : 157.3,                                           |                                                        |
|       |                                |                                | C8); 126.6 (t, ${}^{3}J_{C-H}$ : 6.2, C9); 20.2, q, ${}^{1}J_{C-H}$ :                                            |                                                        |
|       |                                |                                | 128.7, CH <sub>3</sub> )                                                                                         |                                                        |
| 13    | 67.3, t                        | 47.2, t                        | 141.5 (t, ${}^{3}J_{C-H}$ : 8.7, C6); 113.6 (dd, ${}^{1}J_{C-H}$ :                                               |                                                        |
|       | ${}^{1}J_{\text{C-H}}$ : 149.5 | ${}^{1}J_{\text{C-H}}$ : 140.5 | 150.1, <sup>3</sup> <i>J</i> <sub>C-H</sub> : 5.9, C7); 115.1 (dd, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 149.5, |                                                        |
|       |                                |                                | ${}^{3}J_{\text{C-H}}$ : 5.0, C8); 152.4 (t, ${}^{3}J_{\text{C-H}}$ : 6.0, C9); 55.7                             |                                                        |
|       |                                |                                | $(q, {}^{1}J_{C-H}: 142.9, OCH_3)$                                                                               |                                                        |
| 14    | 68.0, d                        | 43.7, t                        | 145.4 (t, ${}^{3}J_{C-H}$ : 8.6, C6); 112.8 (dt, ${}^{1}J_{C-H}$ :                                               | 15.5 (q, <sup>1</sup> <i>J</i> <sub>С-н</sub> : 126.7, |
|       | ${}^{1}J_{\text{C-H}}$ : 150.2 | ${}^{1}J_{\text{C-H}}$ : 141.6 | 162.2, <sup>3</sup> <i>J</i> <sub>C-H</sub> : 5.5, C7); 129.1 (dd, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 157.3, | C10)                                                   |
|       |                                |                                | ${}^{3}J_{\text{C-H}}$ : 8.1, C8); 117.0 (dt, ${}^{1}J_{\text{C-H}}$ : 161.2, ${}^{3}J_{\text{C-H}}$ :           |                                                        |
|       |                                |                                | 7.1, C9)                                                                                                         |                                                        |
| 15    | 75.4, d                        | 45.9, t                        | 145.6 (t, ${}^{3}J_{C-H}$ : 8.4, C6); 113.6 (dt, ${}^{1}J_{C-H}$ :                                               | 141.2 (t, ${}^{3}J_{\text{C-H}}$ : 7.0,                |
|       | ${}^{1}J_{\text{C-H}}$ : 148.5 | ${}^{1}J_{\text{C-H}}$ : 141.3 | 155.9, <sup>3</sup> <i>J</i> <sub>C-H</sub> : 6.5, C7); 129.0 (dd, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 157.2, | C10); 127.6, 127.9,                                    |
|       |                                |                                | ${}^{3}J_{\text{C-H}}$ : 7.1, C8); 117.8 (dt, ${}^{1}J_{\text{C-H}}$ : 168.8, ${}^{3}J_{\text{C-H}}$ :           | 128.3 (C11-13) [a]                                     |
|       |                                |                                | 7.1, C9)                                                                                                         |                                                        |
|       |                                |                                |                                                                                                                  |                                                        |

[a] Due to the overlapping of signals in the coupled spectra, coupling constans could not be calculated.

## *N*-Aryl-*N*'-alkyl(or benzyl)imidazolidines (Table 5)

In C2-unsubstituted compounds (16,21) multiplicity of C2, C4 and C5 signals (triplets) and  ${}^{1}J_{C-H}$  values indicate that they are not in a preferred conformation, according to results obtained from analysis of the  ${}^{1}$ H-NMR spectra.<sup>2</sup>

Unequivocal assignment of 1,2-diaryl-3-methyl derivatives (**17-20**) was performed from analysis of HMQC and HMBC spectra of compound (**19**) (Table 6). In these compounds, C2 appear at an intermediate chemical shift value (*ca.* 84 ppm) respect to compounds (**2**) and (**15**), taken as models of the above series. Spectroscopic characteristics (chemical shift,  ${}^{1}J_{C-H}$  and multiplicity) of ethylene carbons are related to the nature of adjacent nitrogen and maintain the patrons described for 1,3-diaryl and 1,3-dialkyl compounds. Thus, C4 ( $\delta$  *ca.* 53 ppm) is presented as a double doublet ( ${}^{1}J_{C-H}$  134 and 145 Hz) resulting from a preferential methyl orientation, and C5 ( $\delta$  *ca.* 47 ppm) as a triplet ( ${}^{1}J_{C-H}$  142 Hz) which cannot be associated to a particular *N*-phenyl lone pair orientation.

In 1-benzyl-2,3-diarylimidazolidines (**22-24**), C4 and C5 only differ in approximatly 2 ppm, so that assignment was performed exclusively by the observed multiplicity and  ${}^{1}J_{C-H}$  values in each case. Thus, triplets at *ca*. 47.0 ppm ( ${}^{1}J_{C-H}$  142 Hz) were assigned to C5, while signals at lower fields (*ca*. 49 ppm dd,  ${}^{1}J_{C-H}$  143 and 135 Hz) were assigned to C4.

#### Table 5

<sup>13</sup>C Chemical Shift Assignments of Alkyl(or benzyl)-3-aryl-1- imidazolidines (δ: ppm; *J*: Hz)

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| <b>17</b> 84.0, t       53.2, dd       47.8, t       146.3 (t, ${}^{3}J_{C-H}$ : 7.9, C6); 112.5 (dd, ${}^{1}J_{C-H}$ : 157.0,       140.5 (t, ${}^{3}J_{C-H}$ : ${}^{1}J_{C-H}$ : 144.0 ${}^{1}J_{C-H}$ : 134.5 ${}^{1}J_{C-H}$ : 142.9 ${}^{3}J_{C-H}$ : 5.7, C7); 129.0 (dd, ${}^{1}J_{C-H}$ : 157.0, ${}^{3}J_{C-H}$ : 6.0,       C15); 127.7, 128 ${}^{1}J_{C-H}$ : 143.2       C8): 116.5 (dt ${}^{1}J_{C-H}$ : 158.0 ${}^{3}J_{C-H}$ : 6.9, C9): 39.5       128.5 (C16.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.9,   |
| $^{1}L_{2}$ : 143.2 C8): 116.5 (dt $^{1}L_{2}$ : 158.0 $^{3}L_{2}$ : 6.9 C9): 20.5 128.5 (C16.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .2 and |
| $J_{C-H}$ 145.2 (0), 110.5 (ut, $J_{C-H}$ 156.0, $J_{C-H}$ 0.7, C9), 59.5 [126.5 (C10-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) [a]  |
| $(q, {}^{1}J_{C-H}: 134.1, C10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| <b>18</b> 84.2, d 53.2, dd 48.2, t 140.9 (t, ${}^{3}J_{C-H}$ : 6.1, C6) [b]; 113.2 (dd, ${}^{1}J_{C-H}$ : 140.5 (t, ${}^{3}J_{C-H}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.7,   |
| $^{1}J_{C-H}$ : 144.6 $^{1}J_{C-H}$ : 133.9 $^{1}J_{C-H}$ : 143.1 158.0, $^{3}J_{C-H}$ : 5.2, C7) [c]; 114.4 (dd, $^{1}J_{C-H}$ : 158.9, C15) [b]; 127.4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127.9  |
| <sup>1</sup> $J_{C-H}$ : 143.2 <sup>3</sup> $J_{C-H}$ : 5.2, C8) [c]; 151.0 (s, C9); 39.5 (q, <sup>1</sup> $J_{C-H}$ : and 128.2 (C16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8) [a] |
| 134.7, C10); 55.5 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 143.3, OCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| <b>19</b> 84.5, d 53.7, dd 48.4, t 144.6 (t, ${}^{3}J_{C-H}$ : 7.8, C6); 113.0 (dd, ${}^{1}J_{C-H}$ : 157.3, 141.0 (t, ${}^{3}J_{C-H}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1,   |
| $\begin{bmatrix} d \end{bmatrix} = \begin{bmatrix} {}^{1}J_{\text{C-H}}: 145.0 & {}^{1}J_{\text{C-H}}: 134.1 & {}^{1}J_{\text{C-H}}: 142.3 \\ \end{bmatrix} \begin{bmatrix} {}^{3}J_{\text{C-H}}: 5.4, \text{ C7} \end{bmatrix}; 129.8 \text{ (dd, } {}^{1}J_{\text{C-H}}: 156.8, \\ \end{bmatrix} \begin{bmatrix} {}^{3}J_{\text{C-H}}: 5.6, \\ \end{bmatrix} \begin{bmatrix} \text{C15} \end{bmatrix}; 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0, 128.0,$ | .5 and |
| <sup>1</sup> $J_{C-H}$ : 142.8 C8); 125.8 (t, <sup>3</sup> $J_{C-H}$ : 5.7, C9); 39.8 (q, <sup>1</sup> $J_{C-H}$ : 128.9 (C16-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) [a]  |
| 134.4, C10); 20.6 (q, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 126.5, ArCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |

| 20 | 83.8, d                        | 53.1, dd                       | 47.8, t                        | 144.6 (t, <sup>3</sup> <i>J</i> <sub>C-H</sub> : 7.4, C6); 113.5 (dd, <sup>1</sup> <i>J</i> <sub>C-H</sub> : 160.0, | 139.1 (t, ${}^{3}J_{\text{C-H}}$ : 6.9,                       |
|----|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|    | ${}^{1}J_{\text{C-H}}$ : 144.1 | ${}^{1}J_{\text{C-H}}$ : 133.7 | ${}^{1}J_{\text{C-H}}$ : 142.5 | ${}^{3}J_{C-H}$ : 6.0, C7); 128.6 (dd, ${}^{1}J_{C-H}$ : 163.2, ${}^{3}J_{C-H}$ : 5.9,                              | C15); 127.5, 128.3 and                                        |
|    |                                | ${}^{1}J_{\text{C-H}}$ : 143.1 |                                | C8); 121.1 (t, ${}^{3}J_{C-H}$ : 5.8, C9); 39.1 (q, ${}^{1}J_{C-H}$ :                                               | 128.5 (C16-18) [a]                                            |
|    |                                |                                |                                | 134.0, C10)                                                                                                         |                                                               |
| 21 | 70.1, t                        | 52.6, t                        | 45.2, t                        | 145.0 (t, ${}^{3}J_{C-H}$ : 8.2, C6); 112.4 (dd, ${}^{1}J_{C-H}$ : 158.6,                                           | -                                                             |
|    | ${}^{1}J_{\text{C-H}}$ : 147.5 | ${}^{1}J_{\text{C-H}}$ : 139.0 | ${}^{1}J_{\text{C-H}}$ : 139.3 | ${}^{3}J_{\text{C-H}}$ : 5.9, C7); 128.9 (dd, ${}^{1}J_{\text{C-H}}$ : 163.0, ${}^{3}J_{\text{C-H}}$ : 5.9,         |                                                               |
|    |                                |                                |                                | C8); 120.9 (t, ${}^{3}J_{C-H}$ : 5.8, C9); 58.6 (t, ${}^{1}J_{C-H}$ :                                               |                                                               |
|    |                                |                                |                                | 133.1, C10); 138.5 (s, C11); 127,3, 128.8 and                                                                       |                                                               |
|    |                                |                                |                                | 128.6 (C12-14) [a]                                                                                                  |                                                               |
| 22 | 81.2, d                        | 48.8, dd                       | 47.0, t                        | 144.8 (t, ${}^{3}J_{C-H}$ : 7.9, C6); 113.2 (dd, ${}^{1}J_{C-H}$ : 158.5,                                           | 141.1 (s, C15) [e]                                            |
|    | ${}^{1}J_{\text{C-H}}$ : 146.1 | ${}^{1}J_{\text{C-H}}$ : 135.8 | ${}^{1}J_{\text{C-H}}$ : 142.1 | ${}^{3}J_{\text{C-H}}$ : 6.0, C7); 121.2 (t, ${}^{3}J_{\text{C-H}}$ : 6.3, C9); 56.8 (t,                            |                                                               |
|    |                                | ${}^{1}J_{\text{C-H}}$ : 143.1 |                                | <sup>1</sup> <i>J</i> <sub>C-H</sub> : 133.2, C10); 138.4 (s, C11) [e]                                              |                                                               |
| 23 | 79.3, d                        | 48.4, dd                       | 46.9, t                        | 149.9 (t, ${}^{3}J_{C-H}$ : 7.5, C6); 111.3 (dd, ${}^{1}J_{C-H}$ : 157.3,                                           | 138.5 (s, C15) [f];                                           |
|    | ${}^{1}J_{\text{C-H}}$ : 145.9 | ${}^{1}J_{\text{C-H}}$ : 135.6 | ${}^{1}J_{\text{C-H}}$ : 142.3 | ${}^{3}J_{\text{C-H}}$ : 4.9, C7); 136.2 (s, C9); 57.1 (t, 56.4, t, ${}^{1}J_{\text{C-}}$                           | 134.2 (s, C16) [g]                                            |
|    |                                | ${}^{1}J_{\text{C-H}}$ : 144.1 |                                | <sub>H</sub> : 132.5, C10); 137.7 (s, C11) [f] [g]                                                                  |                                                               |
| 24 | 81.0, d                        | 49.3, dd                       | 47.0, t                        | 148.1 (t, ${}^{3}J_{C-H}$ : 7.9, C6); 111.2 (dd, ${}^{1}J_{C-H}$ : 156.2,                                           | 131.8 (s, C15); 114.0                                         |
|    | ${}^{1}J_{\text{C-H}}$ : 146.3 | ${}^{1}J_{\text{C-H}}$ : 134.9 | ${}^{1}J_{\text{C-H}}$ : 141.9 | ${}^{3}J_{\text{C-H}}$ : 5.1, C7); 136.5 (s, C <sub>9</sub> ); 56.4 (t, ${}^{1}J_{\text{C-H}}$ :                    | $(dd, {}^{1}J_{C-H}: 159.2, {}^{3}J_{C-H}:$                   |
|    |                                | ${}^{1}J_{\text{C-H}}$ : 144.5 |                                | 132.9, C10); 138.5 (s, C11) [h]                                                                                     | 4.4, C17), 130.2 (dd,                                         |
|    |                                |                                |                                |                                                                                                                     | ${}^{1}J_{\text{C-H}}$ : 158.2, ${}^{3}J_{\text{C-H}}$ : 4.9, |
|    |                                |                                |                                |                                                                                                                     | C16), 160.7 (s, C18);                                         |
|    |                                |                                |                                |                                                                                                                     | 55.3 (q, ${}^{1}J_{C-H}$ : 142.2,                             |
|    |                                |                                |                                |                                                                                                                     | OCH <sub>3</sub> ) [h]                                        |

[a] Due to the overlapping of the signals in the coupled spectra, coupling constans could not be calculated. [b] Exchangeable assignment. [c] Exchangeable assignment. [d] Signals were unequivocally assigned by HMQC and HMBC spectra. [e] C8,12-14,16-18: 127.2, 127.7, 127.9, 128.1, 128.3, 128.7 and 128.9 (not assigned signals). [f] Exchangeable assignment. [g]: C8,12-14,17-20: 126.1, 127.1, 127.4, 128.3, 128.5, 128.8, 129.8, 130.0. (not assigned signals). [h] C8,12-14,16: 125.9, 127.4, 127.7, 128.4 and 128.8 (not assigned signals).

## Table 6

## HMQC Single-bond and HMBC Long-range Proton-carbon Correlations of Compound (19)



| С<br>бррт  | Proton single bond<br>coupling<br>δ ppm | Proton three bond coupling<br>δ ppm | Proton two bond coupling<br>δ ppm |
|------------|-----------------------------------------|-------------------------------------|-----------------------------------|
| 20.6 (C11) | 2.20 (H11)                              | 6.90 (H8)                           | -                                 |
| 39.8 (C10) | 2.40 (H10)                              | 4.70 (H2), 2.70 (H4)                | -                                 |

| 48.4 (C5)       | 3.70 and 3.90 (H5) | 4.70 (H2)                        | 2.70 and 3.40 (H4) |
|-----------------|--------------------|----------------------------------|--------------------|
| 53.7 (C4)       | 2.70 and 3.40 (H4) | 4.70 (H2), 2.40 (H10)            | 3.70 and 3.90 (H5) |
| 84.5 (C2)       | 4.70 (H2)          | 3.70, 3.90 (H5), 2.70 (H4), 2.40 | -                  |
|                 |                    | (H10)                            |                    |
| 113.0 (C7)      | 6.40 (H7)          | -                                | 6.9 (H8)           |
| 125.8 (C9)      | -                  | 6.40 (H7)                        | 2.20 (H10)         |
| 128.0 (C16)     | [a]                | 4.70 (H2)                        | 7.20-7.40 (H17)    |
| 128.5 and 128.9 | [a]                |                                  |                    |
| (C17-18)        |                    |                                  |                    |
| 129.8 (C8)      | 6.90 (H8)          | 2.20 (H11)                       | -                  |
| 141.0 (C15)     | -                  | [a]                              | 4.70 (H2)          |
| 144.6 (C6)      | -                  | 6.90 (H8), 4.71 (H2)             | -                  |
|                 |                    |                                  |                    |

[a] Multiplet corresponding to H16-18 signals.

## EXPERIMENTAL

The <sup>13</sup>C NMR spectra of compounds (**1-24**) were obtained on a Bruker MSL 300 MHz spectrometer using deuteriochloroform as solvent at rt and the standard concentration of samples was 0.10 M. The HMQC and HMBC spectrum were recorded using a Bruker AVANCE DRX 300 spectrometer. Chemical shifts are reported in ppm ( $\delta$ ) from tetramethylsilane. MS spectra (EI) were recorded using a GC-MS Shimadzu QP-1000 spectrometer operating at 20 eV.

## Imidazolidines (1-24)

Imidazolidines (1, 2),<sup>5</sup>  $(3-6)^{12}$   $(7, 8, 23, 24)^2$  (9, 17-20),<sup>13</sup> (10, 12),<sup>14</sup> (11),<sup>15</sup> 13,<sup>16</sup> (14, 15),<sup>17</sup> 21,<sup>8</sup> and  $22^1$  were prepared following literature procedures. Purity was ascertained by TLC experiments on aluminium sheets silica gel 60 F<sub>254</sub> using five different solvent mixtures.

## 1-Methyl-3-phenylimidazolidine (16)

Compound (16) was synthesized from *N*-phenyl-*N*'-methylethylenediamine (1.5 g, 0.01 mol) and formaldehyde (40% aqueous solution, 1.5 mL, 0.02 mol) in ethanol (10 mL).

The imidazolidine was obtained as an oil (73%) and was purified by silica gel column chromatography eluting with benzene-methanol (9:1). <sup>1</sup>H NMR:  $\delta$  2.35 (s, 3, CH<sub>3</sub>), 3.00 (t, *J*= 6.31 Hz, 2, CH<sub>2</sub>NCH<sub>3</sub>), 3.50 (t, *J*= 6.31 Hz, 2, CH<sub>2</sub>NC<sub>6</sub>H<sub>5</sub>), 4.10 (s, 2, NCH<sub>2</sub>N), 6.50-7.10 (m, 5, C<sub>6</sub>H<sub>5</sub>). ms: *m/z* 162 (M<sup>+</sup>).

Anal. Calcd for C<sub>10</sub>H<sub>14</sub>N<sub>2</sub>: C, 74.03; H, 8.70; N, 17.27. Found: C, 74.15; H, 8.63; N, 17.19.

#### ACKNOWEDGEMENTS

This work was financially supported by the Universidad de Buenos Aires and CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas).

#### REFERENCES

- 1. A. Salerno, G. Buldain, and I. A. Perillo, J. Heterocycl. Chem., 2001, 38, 849.
- 2. I. Perillo, C. de los Santos, and A. Salerno, *Heterocycles*, 2003, **60**, 89. Correspond to Part III of the series.
- 3. F. A. L. Anet and I. Yavari, Org. Magn. Reson., 1979, 12, 362.
- 4. D. Tytgat and M. Gelbcke, Bull. Soc. Chim. Belg., 1989, 98, 243.
- 5. J. P. Albrand, A. Cogne, D. Gagnaire, and J. B. Robert, *Tetrahedron*, 1971, 27, 2453.
- 6. T. Nishiyama, Y. Nanno, and F. Yamada, J. Heterocycl. Chem., 1988, 25, 1773.
- A. F. de C. Alcantara, D. Piló-Veloso, H. O. Stumpf, and W. B. de Almeida, *Tetrahedron*, 1997, 53, 16911.
- 8. A. Salerno, M. E. Hedrera, N. B. D'Accorso, M. Martins Alho, and I. A. Perillo, *J. Heterocycl. Chem.*, 2000, **37**, 57.
- 9. J. B. Stothers, "Carbon-13-NMR Spectroscopy", Academic Press, New York, (1972).
- 10. R. J. Pugmire and D. M. Grant, J. Am. Chem. Soc., 1968, 90, 4232 and references therein.
- 11. J. B. Lambert, Top. Stereochem, 1971, 6, 19.
- 12. J. H. Billman, J. Y. C. Ho, and L. R. Caswell, J. Org. Chem., 1952, 17, 1375.
- 13. A. Salerno, V. Ceriani, and I. A. Perillo, J. Heterocycl. Chem., 1992, 29, 1725.
- 14. J. Jaenicke and E. Brode, *Liebig Ann. Chem.*, 1959, **624**, 120.
- 15. M. Yasue and H. Fujii, *Bull. Nagoya City Univ. Pharm. School*, 1956, 3, 23 (*Chem. Abstr.*, 1957, 51, 3483 g).
- 16. E. Rabe and H. W. Wanzlick, *Liebigs Ann. Chem.*, 1973, 40.
- 17. H. W. Wanzlick and E. Schikora, *Chem. Ber.*, 1961, **94**, 2389.