FOUR NEW ISOFLAVONOIDS AND A NEW 2-ARYLBENZOFURAN FROM THE ROOTS OF *ERYTHRINA VARIEGATA*

Hitoshi Tanaka,^{*,a} Miyuki Hirata,^a Hideo Etoh,^b Magoichi Sako,^c Masaru Sato,^d Jin Murata,^e Hiroko Murata,^f Dedy Darnaedi,^g and Toshio Fukai^h

^aFaculty of Pharmacy, Meijo University, Yagoto, Tempaku-ku, Nagoya 468-8503, Japan, ^bFaculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan, ^cGifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan, ^dDepartment of Oral Pathology, Asahi University School of Dentistry, 1851-Hozumi, Hozumi-cho, Motosu-gun, Gifu 501-0296, Japan, ^eBotanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan, Bunkyo-ku, Tokyo 112-0001, Japan, ^fFaculty of Pharmaceutical Sciences, Setsunan University, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan, ^gBotanic Gardens of Indonesia, Indonesian Institute of Sciences, Jalan Ir. H. Juanda 13, Bogor 16122, Indonesia, ^hSchool of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

E-mail address: hitoshi@ccmfs.meijo-u.ac.jp

Abstract—Four new isoflavonoids, eryvarins H-K, and a new 2-arylbenzofuran, eryvarin L, together with five known compounds, were isolated from the roots of *Erythrina variegata*. Their structures were established on the basis of spectroscopic analysis. Eryvarins H and I are rare naturally-occurring isoflav-3-enes. The antibacterial activity of these five new compounds against 13 strains of methicillin-resistant *Staphylococcus aureus* (MRSA) was examined.

INTRODUCTION

Erythrina variegata is a member of the Leguminosae family with known antibacterial property.¹ Phytochemical studies on the non-alkaloidal secondary metabolites of this plant resulted in the isolation of a cinnamylphenol,² flavanones³ and isoflavonoids.^{4,5} In continuation of our phytochemical investigation of the genus *Erythrina*, we describe in this paper the isolation and structural elucidation of

two new isoflav-3-enes, eryvarins H (1) and I (2), two new pterocarpans, eryvarins J (3) and K (4), and a new 2-arylbenzofuran, eryvarin L (5), along with five known isoflavonoids (6–10). Compounds were isolated from the roots of *E. variegata* obtained from Indonesia. We also report on the antibacterial activities of the new compounds (1–5) against methicillin-resistant *Staphylococcus aureus* (MRSA). The five known compounds were identified as bidwillon C (6),⁶ erysubin C (7),⁷ erythrabyssin II (8),⁸ orientanol B (9)⁹ and phaseollin (10),¹⁰ by comparing spectroscopic data with those of authentic samples or reported values.

RESULTS AND DISCUSSION

The molecular formula of eryvarin H (1) was determined as $C_{17}H_{16}O_5$ using HREIMS ([M]⁺ *m/z* 300.0991). The UV spectral data and characteristic signals in the ¹H NMR spectrum [oxymethylene protons at C-2 (δ 4.92) and an isolated olefinic proton at C-4 (δ 6.56)] showed that compound (1) was an isoflav-3-ene.¹¹ The ¹H NMR spectrum indicated three aromatic protons of an AMX system (δ 6.33, 6.41 and 6.94) on an A ring, as well as two singlet aromatic protons (δ 6.57 and 6.95) and two methoxyl groups (δ 3.77 and 3.84) on a 4-hydroxy-2,5-dimethoxyphenyl group. The placement of the methoxyl group at C-2' was determined from the HMBC spectrum, which revealed cross-peaks between 2'-OMe/C-2', H-3'/C-2' and H-6'/C-2'. The methoxyl group at C-5' was also confirmed from the HMBC spectrum, showing correlations between 5'-OMe/C-5', H-3'/C-5' and H-6'/C-5'. The assignment of these methoxyl groups at C-2' and C-5' were further clarified by DIFNOE analysis, revealing NOE interactions between 2'-OMe/H-2, 2'-OMe/H-3', 5'-OMe/H-6' and H-6'/H-4. Thus, eryvarin H was char-

position	1 ^a	2 ^a	3 ^b	4 ^b	5 ^b
1			128.9	131.9	
2	68.9	68.6	121.2	121.0	151.7*
3	129.7	128.6	154.0	155.7	104.3
4	121.5	122.4	115.3	104.0	120.9
4 a			152.4	155.0	
5	128.3	128.6			111.6
6	109.4	109.5	66.8	66.5	153.1
6 a			39.5	40.3	
6 b			119.7	117.0	
7	159.0	159.3	124.9	107.7	97.9
8	103.4	103.5	107.4	141.1	154.4
9	155.7	155.8	156.8	146.6	123.7
10	117.1	116.9	98.3	98.1	
10a			160.8	153.9	
11a			79.5	78.2	
11b			111.7	112.3	
1'	119.3	125.2	29.2	29.3	111.1
2'	153.1	154.7*	122.2	121.8	151.4*
3'	101.2	115.8	134.0*	135.0	99.5
4'	148.3	154.9*	17.8**	17.9	146.2
5'	142.3	113.3	25.8	25.8	140.5
6'	113.3	129.5			109.2
1 "			22.5		
2 "		76.7	122.0		
3 "		131.7	134.2*		
4 "		117.5	17.9**		
5 "		28.0	25.8		
6 "		28.0			
8 - O M e				56.9	
2'-OMe	56.3	61.9			56.0
5'-OMe	57.1				56.7

Table 1. ¹³C NMR spectral data of compounds (1-5)

a: acetone- d_6 . b: CDCl₃.

** ** Assignments in same vertical column may be interchanged.

mass spectrum that displayed a peculiar intense fragment ion at m/z 321 [M-CH₃]^{+.13} The placement of the 2,2-dimethylpyran moiety fused to C-3' and C-4' was determined from the HMBC spectrum, which exhibited correlations between H-3"/C-3' and H-4"/C-4'. The methoxyl group was assigned to C-2' based on the NOESY spectrum, indicating NOE interactions between OMe/H-2 and OMe/H-4". Thus, eryvarin I was characterized as 7-hydroxy-2'-methoxy-2,2-dimethylpyrano[5",6":3',4']isoflav-3-ene (2). Eryvarins H (1) and I (2) are rare isoflav-3-enes from natural sources, because of their high reactivity (low stability).¹⁴

acterized as 7,4'-dihydroxy-2',5'dimethoxyisoflav-3-ene (1).¹²

The molecular formula of eryvarin I (2) was determined as $C_{21}H_{20}O_4$ using HREIMS ($[M]^+ m/z 336.1371$). A comparison of the ${}^{1}H$ and ${}^{13}C$ NMR spectra of 2 with those of 1 showed the same substitution pattern on the A ring [$\delta_{\rm H}$ 6.98 (H-5), 6.43 (H-6) and 6.35 (H-8); δ_C 128.6 (C-5), 109.5 (C-6), 159.3 (C-7), 103.5 (C-8), 155.8 (C-9) and 116.9 (C-10)] and the C ring [δ_H 4.95 (2H, s, H-2) and 6.64 (1H, s, H-4); $\delta_{\rm C}$ 68.6 (C-2), 128.6 (C-3) and 122.4 (C-4)]; the comparison also revealed that compound (2) was an isoflav-3-ene. The ¹H NMR spectrum indicated a set of ortho-coupled aromatic protons (δ 6.57 and 7.13) and a methoxyl group (δ 3.70), as well as two methyl groups (δ 1.42) and two olefinic protons (δ 5.79 and 6.63) on 2,2-dimethylpyran ring. The а presence of the 2,2-dimethylpyran

moiety was evidenced from the EI

The molecular formula of eryvarin J (**3**) was determined as $C_{25}H_{28}O_4$ using HREIMS ([M]⁺ *m/z* 392.1981). The UV spectral data, and a set of four aliphatic protons in the ¹H NMR spectrum (δ 3.49, 3.56, 4.25 and 5.50), showed it to be a pterocarpan. The ¹H NMR spectrum indicated three aromatic protons of an ABX system (δ 6.35, 6.36 and 7.07), a singlet aromatic proton (δ 7.13) and two 3,3-dimethylallyl (prenyl) groups (δ 1.77, 3.32 and 5.32; δ 1.71, 1.79, 3.38 and 5.20). The aromatic proton of C-7 in the ABX type was clarified using the NOESY spectrum, revealing NOE interaction between the aromatic proton at C-7 (δ 7.07) and the aliphatic proton at C-6a (δ 3.49). The placement of prenyl group at C-2 was confirmed from the HMBC spectrum, which indicated cross peaks between H-1/C-1', H-1'/C-1 and H-1'/C-3. The prenyl group at C-4 was also confirmed from the HMBC spectrum, exhibiting correlations between H-1"/C-3, H-1"/C-4 and H-1"/C-4a. The absolute stereochemistry at C-6a and C-11a was assigned as 6a *R*:11a *R* from its negative optical rotation value.¹⁵ Thus, eryvarin J was characterized as (6a *R*, 11a *R*)-3,9-dihydroxy-2,4-di(3,3-dimethylallyl)pterocarpan (**3**).

The molecular formula of eryvarin K (4) was determined as $C_{21}H_{22}O_5$ using HREIMS ($[M]^+ m/z$ 354.1462). The UV spectral data, and the characteristic aliphatic proton signals in the ¹H NMR spectrum (δ 3.48, 3.61, 4.22 and 5.43), showed that compound (4) also had a pterocarpan skeleton. The ¹H NMR spectrum indicated four singlet aromatic protons (δ 6.41, 6.52, 6.79 and 7.24), a methoxyl group (δ 3.87) and a prenyl group (δ 1.78, 1.79, 3.33 and 5.32). The assignment of the methoxyl group at C-8 was obtained from the NOESY spectrum, in which NOE interactions between OMe/H-7, H-7/H-6 and H-7/H-6 a were observed. The prenyl group at C-2 was confirmed from the HMBC spectrum, revealing crosspeaks between H-1/C-1', H-1'/C-1, H-1'/C-2 and H-1'/C-3. The absolute stereochemistry at C-6a and C-11a was also 6a *R*: 11a *R* (negative optical rotation value). Thus, eryvarin K was characterized as (6a *R*, 11a *R*)-3,9-dihydroxy-8-methoxy-2-(3,3-dimethylallyl)pterocarpan (4).

The molecular formula of eryvarin L (5) was determined as $C_{16}H_{14}O_5$ using HREIMS ($[M]^+ m/z$ 286.0833). The UV spectral data and characteristic aromatic proton signal in the ¹H NMR spectrum (δ 7.14) showed that compound (5) was a 2-arylbenzofuran derivative.¹⁶ The ¹H NMR spectrum indicated three AMX aromatic protons (δ 6.75, 7.00 and 7.37), and two singlet aromatic protons (δ 6.66 and 7.50) and two methoxyl groups (δ 3.91 and 3.96) on a 4-hydroxy-2,5-dimethoxyphenyl group. The methoxyl groups were placed at C-2' and C-5' based on the NOESY spectrum, which exhibited NOE interactions between 2'-OMe/H-3, 2'-OMe/H-3' and 5'-OMe/H-6'. The methoxyl group assignment was further confirmed by the HMBC experiment, revealing cross-peaks between 2'-OMe/C-2', H-3'/C-2', H-6'/C-2', 5'-OMe/C-5', H-3'/C-5' and H-6'/C-5'. Thus, eryvarin L was characterized as 6-hydroxy-2-(4'-hydroxy-2',5'-dimethoxyphenyl)benzofuran (5).

The antibacterial activity of the five new compounds (1-5) against 13 strains of MRSA was investigated

using the previous procedure.¹⁷ Only eryvarin L (5) exhibited weak anti-MRSA activity (each minimum inhibitory concentration is 25 μ g mL⁻¹). This compound also inhibited the growth of 5 strains of vancomycin-resistant enterococci at 50 μ g mL⁻¹.

EXPERIMENTAL

General Experimental Procedures. Optical rotations were measured using a JASCO DIP-370 digital polarimeter. IR spectra were recorded on a JASCO IR-810 spectrophotometer and UV spectra were obtained in MeOH using a Beckman DU-530 spectrophotometer. Mass spectra were obtained using a JEOL JMS-D 300 spectrometer. ¹H and ¹³C NMR spectra were measured on a JEOL ALPHA-600 spectrometer. The ¹H and ¹³C NMR (Table 1) signals of **1–5** were assigned based on the ¹H-¹H COSY, NOESY, HSQC, and HMBC spectra. Column chromatography was performed using Merck silica gel (230–400 mesh). The procedure for the MIC measurement has been described in a previous publication.¹⁷

Extraction and isolation. The finely powdered roots (1.53 kg) were macerated with acetone (18 L) at 23 °C for 72 h (2 times) and the solvent was removed to yield a residue that was divided into n-hexane-, CH₂Cl₂-, and EtOAc-soluble fractions. The CH₂Cl₂-soluble fraction (65.4 g) was applied onto a silica gel column first eluted with CHCl₃-acetone (40 : 1 \rightarrow 10 : 1.5 \rightarrow 1 : 1) and CHCl₃-MeOH (10 : 1 \rightarrow 1 : 1) (each volume; 400 mL) to afford 33 fractions (frs. 1-33). The above procedure was reported in our previous paper.⁵ Fractions 10–12 (739 mg) were separated by silica gel column chromatography using *n*hexane-acetone (3 : 1) to provide erysubin C (7) (4.3 mg), eryvarin J (3) (1.7 mg) and orientanol B (9) (59 mg). Fraction 13 (5.38 g) was separated by silica gel column chromatography using benzene-EtOAc (5:1) (each volume; 100 mL) to afford 15 fractions (frs. 34-48). Fractions 36 and 37 (488 mg) were separated by silica gel column chromatography using *n*-hexane-acetone (4 : 1) to give eryvarin I (2) (7.6) mg) and phaseollin (10) (44 mg). Fractions 38 and 39 (1.98 g) were purified by repeated silica gel column chromatography using *n*-hexane-acetone (3:1) to yield erythrabyssin II (8) (321 mg). Fraction 14 (3.33 g) was subjected to silica gel column chromatography successively using benzene-EtOAc (10:1) and CHCl₃-acetone (20 : 1) to provide eryvarin K (4) (4.6 mg). Fractions 16 and 17 (3.10 g) were applied onto a silica gel column using benzene-EtOAc (10 :1 \rightarrow 5 : 1) (each volume; 80 mL) to afford 15 fractions (frs. 49-63). Fractions 56-58 (1.29 g) were subjected to repeated silica gel column chromatography using *n*-hexane-acetone (2:1) to give eryvarin H (1) (3 mg) and eryvarin L (5) (16 mg). Fractions 59-63 (630 mg) were purified by repeated silica gel column chromatography using *n*-hexaneacetone (2:1) to yield bidwillon C (6) (11 mg).

Eryvarin H (1). Amorphous powder; IR (KBr) v_{max} cm⁻¹: 3420, 1620; UV λ_{max} nm (log ε): 206 (4.41), 235 (sh, 4.07), 288 (3.88), 326 (3.96); EIMS *m*/*z* (rel. int.): 300 ([M]⁺, 100), 286 (38), 271 (19), 269 (23), 243 (8), 241 (8); HREIMS *m*/*z*: 300.0991 (M⁺, Calcd for C₁₇H₁₆O₅, 300.0997); ¹H NMR (acetone-*d*₆): δ 3.77 (3H, s, OMe-2'), 3.84 (3H, s, OMe-5'), 4.92 (2H, s, H-2), 6.33 (1H, d, *J* = 2.2 Hz, H-8), 6.41 (1H, dd, *J* = 8.1, 2.2 Hz, H-6), 6.56 (1H, s, H-4), 6.57 (1H, s, H-3'), 6.94 (1H, d, *J* = 8.1 Hz, H-5), 6.95 (1H, s, H-6'), 7.81 (1H, br s, OH), 8.47 (1H, br s, OH); ¹³C NMR: see Table 1.

Eryvarin I (2). Amorphous powder; IR (Film) v_{max} cm⁻¹: 3400, 1620; UV λ_{max} nm (log ε): 205 (4.33), 241 (4.42), 284 (4.14), 322 (4.30); EIMS *m/z* (rel. int.): 336 ([M]⁺, 81), 321 (100), 306 (19); HREIMS *m/z*: 336.1371 (M⁺, Calcd for C₂₁H₂₀O₄, 336.1360); ¹H NMR (acetone-*d*₆): δ 1.42 (6H, s, H-5" and H-6"), 3.70 (3H, s, OMe), 4.95 (2H, s, H-2), 5.79 (1H, d, *J* = 10.3 Hz, H-3"), 6.35 (1H, d, *J* = 2.2 Hz, H-8), 6.43 (1H, dd, *J* = 8.1, 2.2 Hz, H-6), 6.57 (1H, d, *J* = 8.8 Hz, H-5'), 6.63 (1H, d, *J* = 10.3 Hz, H-4"), 6.64 (1H, s, H-4), 6.98 (1H, d, *J* = 8.1 Hz, H-5), 7.13 (1H, d, *J* = 8.8 Hz, H-6'), 8.48 (1H, br s, OH); ¹³C NMR: see Table 1.

Eryvarin J (3). Amorphous powder; $[\alpha]_D^{23} -137^\circ$ (*c* 0.1, MeOH); IR (KBr) ν_{max} cm⁻¹: 3440; UV λ_{max} nm (log ε): 209 (4.70), 235 (sh, 4.02), 287 (3.82); EIMS *m/z* (rel. int.): 392 ([M]⁺, 100), 375 (7), 336 (10), 321 (30), 293 (10), 281 (22); HREIMS *m/z*: 392.1981 (M⁺, Calcd for C₂₅H₂₈O₄, 392.1986); ¹H NMR (CDCl₃): δ 1.71 (3H, s, H-5"), 1.77 (6H, s, H-4' and H-5'), 1.79 (3H, s, H-4"), 3.32 (2H, d, *J* = 7.3 Hz, H-1'), 3.38 (2H, d, *J* = 7.3 Hz, H-1"), 3.49 (1H, m, H-6a), 3.56 (1H, t-like, *J* = 11.0 Hz, H-6), 4.25 (1H, dd, *J* = 11.0, 5.1 Hz, H-6), 4.89 (1H, br s, OH), 5.20 (1H, t, *J* = 7.3 Hz, H-2"), 5.32 (1H, t, *J* = 7.3 Hz, H-2'), 5.50 (1H, d, *J* = 7.3 Hz, H-11a), 5.57 (1H, s, OH), 6.35 (1H, dd, *J* = 8.1, 2.2 Hz, H-8), 6.36 (1H, d, *J* = 2.2 Hz, H-10), 7.07 (1H, d, *J* = 8.1 Hz, H-7), 7.13 (1H, s, H-1); ¹³C NMR: see Table 1.

Eryvarin K (4). Amorphous powder; $[\alpha]_D^{23} -183^\circ$ (*c* 0.1, MeOH); IR (KBr) ν_{max} cm⁻¹: 3400; UV λ_{max} nm (log ε): 208 (4.67), 235 (sh, 4.04), 291 (3.92); EIMS *m/z* (rel. int.): 354 ([M]⁺, 100), 299 (29), 232 (6), 194 (15); HREIMS *m/z*: 354.1462 (M⁺, Calcd for C₂₁H₂₂O₅, 354.1466); ¹H NMR (CDCl₃): δ 1.78 (3H, s, H-5'), 1.79 (3H, s, H-4'), 3.33 (2H, d, *J* = 7.3 Hz, H-1'), 3.48 (1H, m, H-6a), 3.61 (1H, t-like, *J* = 11.0 Hz, H-6), 3.87 (3H, s, OMe), 4.22 (1H, dd, *J* = 11.0, 5.1 Hz, H-6), 5.27 (1H, br s, OH), 5.32 (1H, t, *J* = 7.3 Hz, H-2'), 5.43 (1H, d, *J* = 6.6 Hz, H-11a), 5.68 (1H, s, OH), 6.41 (1H, s, H-4), 6.52 (1H, s, H-10), 6.79 (1H, s, H-7), 7.24 (1H, s, H-1); ¹³C NMR: see Table 1.

Eryvarin L (5). Amorphous powder; IR (KBr) ν_{max} cm⁻¹: 3400, 1620; UV λ_{max} nm (log ε): 212 (4.37), 251 (sh, 3.81), 274 (sh, 3.98), 281 (4.01), 329 (4.42), 340 (4.38); EIMS *m/z* (rel. int.): 286 ([M]⁺, 100), 271 (49), 243 (19), 228 (14), 200 (4), 187 (5), 172 (6), 149 (7), 143 (10); HREIMS *m/z*: 286.0833 (M⁺, Calcd for C₁₆H₁₄O₅, 286.0840); ¹H NMR (CDCl₃): δ 3.91 (3H, s, OMe-2'), 3.96 (3H, s, OMe-5'), 5.10 (1H, br s, OH), 5.82 (1H, br s, OH), 6.66 (1H, s, H-3'), 6.75 (1H, dd, *J* = 8.1, 2.2 Hz, H-5), 7.00 (1H, d, *J*

= 2.2 Hz, H-7), 7.14 (1H, s, H-3), 7.37 (1H, d, J = 8.1 Hz, H-4), 7.50 (1H, s, H-6'); ¹³C NMR: see Table 1.

REFERENCES AND NOTES

- 1. L. A. Mitscher, S. Drake, S. R. Gollapudi, and S. K. Okwute, J. Nat. Prod., 1987, 50, 1025.
- H. Telikepalli, S. R. Gollapudi, A. K-Shokri, L. Velazquez, R. A. Sandmann, E. A. Veliz, K. V. J. Rao, A. S. Madhavi, and L. A. Mitscher, *Phytochemistry*, 1990, **29**, 2005.
- V. R. Hegde, P. Dai, M. G. Patel, M. S. Puar, P. Das, J. Pai, R. Bryant, and P. A. Cox, *J. Nat. Prod.*, 1997, 60, 537.
- V. H. Deshpande, A. D. Pendse, and R. Pendse, *Indian J. Chem.*, 1977, **15B**, 205; M. Kobayashi, T. Mahmud, N. Yoshioka, H. Shibuya, and I. Kitagawa, *Chem. Pharm. Bull.*, 1997, **45**, 1615; H. Tanaka, H. Etoh, H. Shimizu, T. Makita, and Y. Tateishi, *Planta Med.*, 2000, **66**, 578; H. Tanaka, M. Hirata, H. Etoh, N. Watanabe, H. Shimizu, M. Ahmad, Z. Khan, and M. Anwar, *Heterocycles*, 2001, **55**, 2341.
- 5. H. Tanaka, M. Hirata, H. Etoh, H. Shimizu, M. Sako, J. Murata, H. Murata, D. Darnaedi, and T. Fukai, *Phytochemistry*, 2003, **62**, 1243.
- 6. M. Iinuma, Y. Okawa, T. Tanaka, Y. Kobayashi, and K. Miyauchi, Heterocycles, 1994, 39, 687.
- H. Tanaka, H. Etoh, N. Watanabe, H. Shimizu, M. Ahmad, and G. H. Rizwani, *Phytochemistry*, 2001, 56, 769.
- 8. V. S. Kamat, F. Y. Chuo, I. Kubo, and K. Nakanishi, Heterocycles, 1981, 15, 1163.
- 9. H. Tanaka, T. Tanaka, and H. Etoh, Phytochemistry, 1998, 47, 475.
- 10. D. R. Perrin, C. P. Whittle, and T. J. Batterham, Tetrahedron Lett., 1972, 1673.
- 11. T. Miyase, A. Ueno, T. Noro, and S. Fukushima, Chem. Pharm. Bull., 1981, 29, 2205.
- After submission of this article, we found that eryvarin H (1) was quite recently isolated from Kenyan *Erythrina abyssinica*: A. Yenesew, S. Derese, B. Irungu, J. O. Midiwo, N. C. Waters, P. Liyala, H. Akala, M. Heydenreich, and M. G. Peter, *Planta Med.*, 2003, **69**, 658. Spectroscopic data of 1 were identical with those of 7,4'-dihydroxy-2',5'-dimethoxyisoflav-3-ene reported.
- 13. M. Takayama, T. Fukai, Y. Hano, and T. Nomura, Heterocycles, 1992, 33, 405.
- 14. P. M. Dewick, Isoflav-3-enes, in *The Flavonoids: Advances in Research since 1980.* ed. by J. B. Harborne, Chapman and Hall, London, 1988, pp. 172-173.
- 15. J. L. Ingham and K. R. Markham, Phytochemistry, 1980, 19, 1203.
- M. Komatsu, I. Yokoe, and Y. Shirataki, *Chem. Pharm. Bull.*, 1981, **29**, 2069; S. Demizu, K. Kajiyama,
 K. Takahashi, Y. Hiraga, S. Yamamoto, Y. Tamura, K. Okada, and T. Kinoshita, *Chem. Pharm. Bull.*, 1988, **36**, 3474.
- 17. H. Tanaka, M. Sato, S. Fujiwara, M. Hirata, H. Etoh, and H. Takeuchi, *Lett. Appl. Microbiol.*, 2002, 35, 494.