CONCISE SYNTHESIS OF PYRROLOPHENANTHRIDINE ALKALOIDS USING A Pd-CATALYZED BIARYL COUPLING REACTION WITH REGIOSELECTIVE C-H ACTIVATION

Takashi Harayama,* Akihiro Hori, Hitoshi Abe, and Yasuo Takeuchi

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan e-mail:harayama@pharm.okayama-u.ac.jp

Abstract – The concise synthesis of the pyrrolophenanthridine alkaloids such as anhydrolycorine, assoanine, anhydrolycorin-7-one, and oxoassoanine, was achieved using the Pd-catalyzed biaryl coupling reaction of 1-(2-halobenzyl)-2,3-dihydroindole by applying the regioselective C-H activation method with intramolecular coordination of the benzylamino group to Pd.

The significant biological activities¹ and unique polycyclic structures of pyrrolophenanthridine alkaloids $(e.g., 1 \sim 8)$ has led to recent interest in developing new synthetic methods for these alkaloids.^{2,3} Some of these attempts involve an intramolecular aryl-aryl coupling reaction with Pd reagent as the key step, including the dehydrogenation between an arene and an arene with Pd(OAc)₂ in acetic acid,⁴ a Heck-type reaction between a monobromoarene and an arene with a Pd reagent, ^{3, 4a, 5} and the intramolecular coupling reaction of a bis-haloarene with a Pd reagent.⁶ We reported the synthesis of several benzo[c]phenanthridine alkaloids using Pd-catalyzed biaryl coupling reactions of 2-halo-Nnaphthylbenzamides.⁷ In a preliminary study on the synthesis of pyrrolophenanthridine alkaloids, the biaryl coupling reaction of 1-(2-iodobenzoyl)-2,3-dihydroindole (9) with $Pd(OAc)_2$ in the presence of K₂CO₃ in DMA was examined. However, the desired dihydropyrrolophenanthridone (10) was obtained only in 8% yield.⁸ Cai et al. reported that the reaction of 1-(2-bromobenzoyl)-2,3-dihydroindole (11) using Pd(OAc)₂ and K₂CO₃ in DMA in the absent of phosphine ligand afforded 1 in 55% yield,^{5a, 9} whereas Miki et al. recorded that 1-(2-bromo-4,5-dimethoxybenzoyl)indole-2,3-dicarboxylate (12) with Pd(PPh₃)₄ gave no coupling product.³ Moreover, the Heck-type reaction of 1-(2-bromobenzyl)-2,3diphenylindole (13) gave no coupling product,^{4a} whereas the reaction of dimethyl 1-(2bromobenzyl)indole-2,3-dicarboxylate (14) with $Pd(PPh_3)_4$ gave the coupling product (15).³ Recently, we

developed a method of synthesizing a new skeletal compound, naphthobenzazepine, by regioselective C-H activation using the intramolecular coordination of a benzylamine to $Pd.^{11, 12}$ We applied this strategy to the synthesis of pyrrolophenanthridine alkaloids, as shown in Scheme 2. We envisioned that the intramolecular biaryl coupling reaction of 1-(2-halobenzyl)dihydroindole (**A**) using Pd reagent would afford dihydropyrrolophenanthridine (**B**) directly, *via* an oxidative addition to Pd(0) and coordination of

 $R^{1}+R^{2} = OCH_{2}O, R^{3} = H_{2}$: anhydrolycorine (1) $R^{1} = R^{2} = OMe, R^{3} = H_{2}$: assoanine (2) $R^{1}+R^{2} = OCH_{2}O, R^{3} = O$: anhydrolycorin-7-one (3) $R^{1} = R^{2} = OMe, R^{3} = O$: oxoassoanine (4)

 $R^{1}+R^{2} = OCH_{2}O$: anhydrolycorinium chloride (5) $R^{1} = R^{2} = OMe$: vasconine (6)

 $R^{1}+R^{2} = OCH_{2}O$: hippadine (7) $R^{1} = R^{2} = OMe$: pratosine (8)

9:
$$R^{1}=R^{2}=H$$
, $R^{3}=O$, $X=I$
11: $R^{1}+R^{2}=OCH_{2}O$, $R^{3}=O$, $X=Br$
16a: $R^{1}+R^{2}=OCH_{2}O$, $R^{3}=H_{2}$, $X=Br$
16b: $R^{1}+R^{2}=OCH_{2}O$, $R^{3}=H_{2}$, $X=I$
17a: $R^{1}=R^{2}=OMe$, $R^{3}=H_{2}$, $X=Br$
17b: $R^{1}=R^{2}=OMe$, $R^{3}=H_{2}$, $X=I$
20: $R^{1}+R^{2}=OCH_{2}O$, $R^{3}=H_{2}$, $X=H$
22: $R^{1}=R^{2}=OMe$, $R^{3}=H_{2}$, $X=H$

12 : $R^1 = R^2 = OMe$, $R^3 = O$, $R = CO_2Me$, X = Br **13** : $R^1 = R^2 = OMe$, $R^3 = H_2$, $R = C_6H_5$, X = Br **14** : $R^1 = R^2 = OMe$, $R^3 = H_2$, $R = CO_2Me$, X = Br **21** : $R^1 + R^2 = OCH_2O$, $R^3 = H_2$, R = X = H**23** : $R^1 = R^2 = OMe$, $R^3 = H_2$, R = X = H

18a : $R^1 + R^2 = OCH_2O$, X = Br **18b** : $R^1 + R^2 = OCH_2O$, X = I **19a** : $R^1 = R^2 = OMe$, X = Br**19b** : $R^1 = R^2 = OMe$, X = I

Scheme 1. Pyrrolophenanthridine alkaloids and related compounds

Scheme 2. Strategy and proposed mechanism for synthesis of pyrrolophenanthridine (**B**) from 1-(2-halobenzyl)dihydroindole (**A**)

Table 1. Results of biaryl coupling reactions of 1-(2-halo-4,5-methylenedioxybenzyl)-2,3dihydroindole (16). a^{a}

		Pd (OAc)	ligand (L/Pd) ^{b)}			yield (%)			
substrate		Pd (OAc) ₂ (mol%)		temp.	time	1	3	20	21
16a	1	10	$P(o-tol)_3(2)$	125°C	1.5 h	37	15	23	16
	2	10	$Cy_{3}P(2)$	125°C	1 h	50	6	17	8
	3 ^{<i>c</i>)}	20	$P(o-tol)_3(2)$	125°C	3 h	trace	45	19	8
16b	4	5	Cy ₃ P (2)	125°C	1.5 h	48	12	21	12
	5^{d}	5	_	115°C	3.5 h	50	11	17	12

a) The reaction was carried out in a degassed DMF and under Ar atmosphere. 200 mol% of K_2CO_3 was added. b) Molar ratio between ligand and Pd. c) The reaction was carried out in an air atomosphere. d) 100 mol% of n-Bu₄NCl and 300 mol% of K_2CO_3 were added.

Table 2. Results of biaryl coupling reactions of 1-(2-halo-4,5-dimethoxybenzyl)-2,3-dihydroindole (17). a^{a}

		Pd (OAc)	ligand			yield (%)			
substrate		Pd (OAc) (mol%)	ligand (L/Pd) ^{b)}	temp.	time	2	4	22	23
17a	1	10	$P(o-tol)_3(2)$	140°C	2 h	28	13	28	18
	2	10	$Cy_{3}P(2)$	125°C	1 h	45	13	26	3
	3 ^{c)}	20	$P(o-tol)_3(2)$	125°C	3 h	trace	34	11	10
17b	4	5	Cy ₃ P (2)	125°C	1 h	24	10	33	4
	5^{d}	5	-	125°C	4 h	43	6	22	11

a) The reaction was carried out in a degassed DMF and under Ar atmosphere. 200 mol% of K_2CO_3 was added. b) Molar ratio between ligand and Pd. c) The reaction was carried out in an air atomosphere. d) 100 mol% of n-Bu₄NCl and 300 mol% of K_2CO_3 were added.

the amine to Pd(II), followed by the regioselective electrophilic substitution of Pd(II) at the C_7 position of the dihydroindole moiety (forming a four-membered palladacycle)¹³ and the reductive elimination of

Pd(0).

The starting materials (16^{14} and 17^{14}) for the synthesis of anhydrolycorine (1) and assoanine (2) were prepared from dihydroindole and the 2-halobenzyl bromides (18a,^{15a} 18b,^{15b} 19,^{15c} and $19b^{15d}$) in the presence of *i*-Pr₂NEt in dry CH₃CN at 70°C, in 64~91% yield. The intramolecular coupling reaction of 1-(2-bromobenzyl)-2,3-dihydroindole ($16a^{14}$ and $17a^{14}$) and 1-(2-iodobenzyl)-2,3-dihydroindole ($16b^{14}$ and $17b^{14}$) using Pd were examined; the results are summarized in Tables 1 and 2. The reaction of 16a with Pd(OAc)₂, P(*o*-tol)₃, and K₂CO₃ in a degassed DMF under an Ar atmosphere gave $1^{16a, 17}$ and anhydrolycorin-7-one (3) ^{16a, 17} in 37% and 15% yield, respectively, along with 20^{14} and 21^{14} (run 1, Table 1), and the reaction under an air atmosphere gave 3 in 45% yield (run 3, Table 1).^{16a, 18} The reaction of 17awith Pd(OAc)₂, P(*o*-tol)₃, and K₂CO₃ in a degassed DMF under an Ar atmosphere gave $2^{16d, 17}$ and oxoassoanine (4) ^{16c, 17} along with 22^{14} and 23^{14} (run 1, Table 2), and the reaction under an air atmosphere gave 4 in 34% yield (run 3, Table 2).¹⁸. The reaction of 16a and 17a using PCy₃ as a ligand gave the coupling products in better yield (runs 2, Tables 1 and 2). ^{16c}

Subsequently, the biaryl coupling reaction of $16b^{14}$ and $17b^{14}$, which are more reactive than bromo compounds, was examined, in order to improve the yield, but the yields were not improved. (runs 4, Tables 1 and 2) In these cases, Jeffery's conditions¹⁸ gave the coupling products in higher yields. (runs 5, Tables 1 and 2)

In conclusion, the concise synthesis of pyrrolophenanthridine alkaloids was accomplished by applying a strategy utilizing regioselective C-H activation by the intramolecular coordination of the benzylamino group to Pd.¹¹

ACKNOWLEDGEMENT

The authors are indebted to the SC-NMR Laboratory of Okayama University for the NMR spectral measurements.

REFERENCES AND NOTES

- a) S. C. Chattopadhyay, U. Chattopadhyay, P. P. Marthur, K. S. Saini, and S. Ghosal, *Planta Med.*, 1983, **49**, 252; b) G. R. Petti, V. Gaddamidi, A. Goswani, and G. M. Cragg, *J. Nat. Prod.*, 1984, **47**, 796; c) S. Ghosal, R. Lochan, Ashutosh, Y. Kumar, and R. S. Srivastava, *Phytochemstry*, 1985, **24**, 1825; d) R. K. Y. Zee-Cheng, S.-J. Yan, and C. C. Chen, *J. Med. Chem.*, 1978, **21**, 199; e) C. C. Chen and R. K. Y. Zee-Cheng, *Heterocycles*, 1981, **15**, 1275.
- a) O. Hoshino, "The Alkaloids" Vol. 51, ed. by G. A. Cordell, Academic Press, New York, 1998, pp. 323-424; b) J. R. Lewis, *Nat. Prod. Rep.*, 2000, 17, 57; c) J. R. Lewis, *Nat. Prod. Rep.*, 1998, 15, 107;
 d) S. E. Wolkenberg and D. L. Boger, *J. Org. Chem.*, 2002, 67, 7361; e) D. L. Boger and S. E.

Wolkenberg, *J. Org. Chem.*, 2000, **65**, 9120; f) D. C. Harrowven, D. Lai, and M. C. Lucas, *Synthesis*, **1999**, 1300 and references cited therein; g) A. Padwa, M. A. Brodney, B. Liu, K. Satake, and T. Wu, *J. Org. Chem.*, 1999, **64**, 3595.

- 3 Y. Miki, H. Shirokoshi, and K. Matsushita, *Tetrahedron Lett.*, 1999, **40**, 4347 and references cited therein.
- 4 a) D. C. Black, P. A. Keller, and N. Kumar, *Tetrahedron*, 1993, **49**, 151; b) D. C. Black, P. A. Keller, and N. Kumar, *Tetrahedron Lett.*, 1989, **30**, 5807; c) T. Itatani, *Synthesis*, **1979**, 151.
- 5 a) H. W. Shao and J. C. Cai, *Chinese Chem. Lett.*, 1996, 7, 13; b) A. P. Kozikowsky and D. Ma, *Tetrahedron Lett.*, 1991, 32, 3317; c) S. J. Garden, J. C. Torres, and A. C. Pinto, *J. Braz. Chem. Soc.*, 2000, 11, 441.
- 6 a) T. Sakamoto, A. Yasuhara, Y. Kondo, and H. Yamanaka, *Heterocycles*, 1993, 36, 2597; b) R. Grigg, A. Teasdale, and V. Sridharan, *Tetrahedron Lett.*, 1991, 32, 3859.
- a) T. Harayama, T. Akiyama, H. Akamatsu, K. Kawano, H. Abe, and Y. Takeuchi, *Synthesis*, 2001, 444; b) T. Harayama, H. Akamatsu, K. Okamura, T. Miyagoe, T. Akiyama, H. Abe, and Y. Takeuchi, *J. Chem. Soc., Perkin Trans. 1*, 2001, 523; c) T. Harayama and K. Shibaike, *Heterocycles*, 1998, 49, 191; d) T. Harayama, T. Akiyama, Y. Nakano, H. Nishioka, H. Abe, and Y. Takeuchi, *Chem. Pharm. Bull.*, 2002, 50, 519; e) T. Harayama, T. Akiyama, Y. Nakano, K. Shibaike, H. Akamatsu, A. Hori, H. Abe, and Y. Takeuchi, *Synthesis*, 2002, 237; f) T. Harayama, T. Sato, Y. Nakano, H. Abe, and Y. Takeuchi, *Heterocycles*, 2003, 59, 293; g) T. Harayama, A. Hori, Y. Nakano, T. Akiyama, H. Abe, and Y. Takeuchi, *Heterocycles*, 2002, 58, 159.
- 8 The biaryl coupling reaction of 1-benzoyl-7-iodo-2,3-dihydroindole with Pd(OAc)₂, *n*-Bu₃P, diphenylphosphinopropane, and Ag₂CO₃ in DMF under reflux for 30 min^{7d} gave 10 in 79% yield. However, the reaction of 9 under the same conditions gave a mixture of 9 and an unidentified compound.
- 9 Phosphine ligand is generally required for the Heck-type reaction of bromoarene¹⁰ and we could not reproduce Cai's results.^{5a}
- 10 a) R. F. Heck, *Organic Reactions*, ed. by W. G. Daube, John Wiley & Sons. Inc., New York, 1982, Vol. 27, pp. 345-390; b) W. Cabri and I. Candiani, *Acc. Chem. Res.*, 1995, 28, 2.
- 11 T. Harayama, T. Sato, A. Hori, H. Abe, and Y. Takeuchi, Synlett, 2003, 1141.
- 12 a) A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc., 1968, 90, 909; b) M. I. Bruce, Ang. Chem., Int. Ed. Engl., 1977, 16, 73.
- 13 D. Solé, L. Valverde, X. Solans, M. Font-Bardía, and J. Bonjoch, J. Am. Chem. Soc., 2003, 125, 1587.
- 14 **16a** : mp 66-67°C; ¹H-NMR (200 MHz, CDCl₃) δ=3.01 (2H, t, *J*=8.3), 3.41 (2H, t, *J*=8.0), 4.21 (2H, s). **16b** : mp 74.5-75.5°C; ¹H-NMR (200 MHz, CDCl₃) δ=3.02 (2H, t, *J*=8.1), 3.40 (2H, t, *J*=8.1), 4.15

(2H, s). **17a** : mp 68-69°C; ¹H-NMR (200 MHz, CDCl₃) δ =3.01 (2H, t, *J*=8.3), 3.38 (2H, t, *J*=8.32), 4.23 (2H, s). **17b** : mp 93-94°C; ¹H-NMR (200 MHz, CDCl₃)⁵ δ =3.01 (2H, t, *J*=8.2), 3.40 (2H, t, *J*=8.2), 4.20 (2H, s). **20** : oil; ¹H-NMR (200 MHz, CDCl₃) δ =2.96 (2H, t, *J*=8.2), 3.29 (2H, t, *J*=8.2), 4.16 (2H, s). **21** : mp 82-83°C; ¹H-NMR (200 MHz, CDCl₃) δ =5.22 (2H, s), 6.53 (1H, d, *J*=3.4), 7.12 (1H, d, *J*=3.4). **22** : mp 77-78°C ; ¹H-NMR (200 MHz, CDCl₃) δ =2.97 (2H, t, *J*=8.0), 3.33 (2H, t, *J*=8.0), 4.21 (2H, s). **23** : mp 61.5-62.5°C; ¹H-NMR (200 MHz, CDCl₃) δ =5.25 (2H, s), 6.53 (1H, d, *J*=3.6), 7.11 (1H, d, *J*=3.6).

- 15 a) W. F. Barthel and B. H. Alexander, J. Org. Chem., 1958, 23, 1012; b) J. Cossy, L. Tresnard, and D. G. Pardo, Eur. J. Org. Chem., 1999, 1925; c) Y. Landais, J. P. Robin, and A. Lebrum, Tetrahedron, 1991, 47, 3787; d) A. A. Pletnev and R. C. Larock, J. Org. Chem., 2002, 67, 9428.
- 16 a) J. W. Cook, J. D. Loudon, and P. McCloskey, J. Chem. Soc., 1954, 4176; b) H. Hara, O. Hoshino, and B. Umezawa, *Tetrahedron Lett.*, 1972, 5031; c) H. F. Fales, L. D. Giuffrida, and W. C. Wildman, J. Am. Chem. Soc., 1956, 78, 4145; d) J. S. Parnes, D. S. Cartner, L. J. Kurz, and L. A. Flippin, J. Org. Chem., 1994, 59, 3497.
- 17 Anhydrolycorin (1) : mp 110-112.5°C (lit.,^{16a} 108-111°C). Anhydrolycorin-7-one (3) : mp 236-237°C (lit.,^{16b} 232-234°C). Assoanine (2) : mp 165.5-168°C (lit.,^{16d} 175-176°C). Oxoassoanine (4) : mp 272.5-274.5°C (lit.,^{16d} 271-272°C). It is known that the compounds (1 and 3) were easily oxidized in an air to produce 2^{16a} and 4^{16c}, repectively. The ¹H-NMR spectral data of the synthetic samples were identical with the reported data of the authentic samples.^{16b, 16d}
- 18 The reaction of 16a under an oxygen atmosphere, to accelerate the oxidation, afforded 3 only in 21% yield.
- 19 a) T. Jeffery, J. Chem. Soc., Chem. Commun., 1984, 1287; b) T. Jeffery, Synthesis, 1987, 70; c) T. Jeffery, Tetrahedron, 1996, 52, 10113.