CONCISE SYNTHESIS OF PYRROLOPHENANTHRIDINE ALKALOIDS USING A Pd-CATALYZED BIARYL COUPLING REACTION WITH REGIOSELECTIVE C-H ACTIVATION

Takashi Harayama,* Akihiro Hori, Hitoshi Abe, and Yasuo Takeuchi

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan e-mail:harayama@pharm.okayama-u.ac.jp

Abstract – The concise synthesis of the pyrrolophenanthridine alkaloids such as anhydrolycorine, assoanine, anhydrolycorin-7-one, and oxoassoanine, was achieved using the Pd-catalyzed biaryl coupling reaction of 1-(2-halobenzyl)-2,3 dihydroindole by applying the regioselective C-H activation method with intramolecular coordination of the benzylamino group to Pd.

The significant biological activities¹ and unique polycyclic structures of pyrrolophenanthridine alkaloids $(e.g., \mathbf{1} \setminus \mathbf{8})$ has led to recent interest in developing new synthetic methods for these alkaloids.^{2,3} Some of these attempts involve an intramolecular aryl-aryl coupling reaction with Pd reagent as the key step, including the dehydrogenation between an arene and an arene with $Pd(OAc)_2$ in acetic acid,⁴ a Heck-type reaction between a monobromoarene and an arene with a Pd reagent, $3, 4a, 5$ and the intramolecular coupling reaction of a bis-haloarene with a Pd reagent. ⁶ We reported the synthesis of several benzo[*c*]phenanthridine alkaloids using Pd-catalyzed biaryl coupling reactions of 2-halo-*N*naphthylbenzamides. ⁷ In a preliminary study on the synthesis of pyrrolophenanthridine alkaloids, the biaryl coupling reaction of 1-(2-iodobenzoyl)-2,3-dihydroindole (9) with Pd(OAc)₂ in the presence of K₂CO₃ in DMA was examined. However, the desired dihydropyrrolophenanthridone (10) was obtained only in 8% yield. ⁸ Cai *et al*. reported that the reaction of 1-(2-bromobenzoyl)-2,3-dihydroindole (**11**) using Pd(OAc)₂ and K₂CO₃ in DMA in the absent of phosphine ligand afforded 1 in 55% yield,^{5a, 9} whereas Miki *et al*. recorded that 1-(2-bromo-4,5-dimethoxybenzoyl)indole-2,3-dicarboxylate (**12**) with $Pd(PPh₃)₄$ gave no coupling product.³ Moreover, the Heck-type reaction of 1-(2-bromobenzyl)-2,3diphenylindole (**13**) gave no coupling product, 4a whereas the reaction of dimethyl 1-(2 bromobenzyl)indole-2,3-dicarboxylate (14) with Pd(PPh₃)₄ gave the coupling product (15) .³ Recently, we

developed a method of synthesizing a new skeletal compound, naphthobenzazepine, by regioselective C-H activation using the intramolecular coordination of a benzylamine to Pd. $^{11, 12}$ We applied this strategy to the synthesis of pyrrolophenanthridine alkaloids, as shown in Scheme 2. We envisioned that the intramolecular biaryl coupling reaction of 1-(2-halobenzyl)dihydroindole (**A**) using Pd reagent would afford dihydropyrrolophenanthridine (**B**) directly, *via* an oxidative addition to Pd(0) and coordination of

 $R^1 + R^2 = OCH_2O$, $R^3 = O$: anhydrolycorin-7-one (3) $R^{1} = R^{2} = OMe, R^{3} = O:$ oxoassoanine (4) R^1 + R^2 = OCH₂O, R^3 = H₂: anhydrolycorine (1) $R_1^1 = R_2^2 = OM$ e, $R_3^3 = H_2$: assoanine (2)

 R^1 + R^2 = OCH₂O : anhydrolycorinium chloride (5) $R^1 = R^2 = OMe$: vasconine (6)

 $R^1 + R^2 = OCH_2O$: hippadine (7) $R^1 = R^2 = OMe$: pratosine **(8)**

9 : $R^1 = R^2 = H$, $R^3 = O$, $X = I$ **11**: R^1 + R^2 =OCH₂O, R^3 =O, X=Br **20**: $R^1 + R^2 = OCH_2O$, $R^3 = H_2$, $X = H$ **22**: $R^1 = R^2 = OMe$, $R^3 = H_2$, $X = H$ **16b** : R^1 + R^2 =OCH₂O, R^3 =H₂, X=I 17b : $R^1=R^2=OMe, R^3=H_2, X=I$ **16a** : R^1 + R^2 =OCH₂O, R^3 =H₂, X=Br **17a** : $R^1=R^2=OMe, R^3=H_2, X=Br$

13 : $R^1 = R^2 = OMe$, $R^3 = H_2$, $R = C_6H_5$, $X = Br$ **14** : $R^1 = R^2 = OMe$, $R^3 = H_2$, $R = CO_2Me$, $X = Br$ **23**: $R^1 = R^2 = OMe$, $R^3 = H_2$, $R = X = H$ **21** : $R^1 + R^2 = OCH_2O$, $R^3 = H_2$, $R = X = H$ **12** : $R^1 = R^2 = OMe$, $R^3 = O$, $R = CO_2Me$, $X = Br$

18a : R^1 + R^2 =OCH₂O, X=Br **19a** : $R^1 = R^2 = OMe$, $X = Br$ **18b** : R^1 + R^2 =OCH₂O, X=I **19b** : $R^1=R^2=OMe, X=I$

Scheme 1. Pyrrolophenanthridine alkaloids and related compounds

Scheme 2. Strategy and proposed mechanism for synthesis of pyrrolophenanthridine (**B**) from 1-(2-halobenzyl)dihydroindole (**A**)

Table 1. Results of biaryl coupling reactions of 1*-*(2-halo-4,5-methylenedioxybenzyl)-2,3 dihydroindole (**16**). *a)*

			ligand (L/Pd) b)			yield $(\%)$			
substrate		Pd $(OAc)_2$ (mol%)		temp.	time		3		21
16a		10	$P(o-tol)_{3}(2)$	125° C	1.5 _h	37	15	23	- 16
	$\mathcal{D}_{\mathcal{L}}$	10	Cy ₃ P(2)	125° C	1 _h	50	6	-17	- 8
	$\mathcal{R}^{(1)}$	20	$P(o-tol)3(2)$	125° C	3 _h	trace	45	-19	-8
16b			$Cy_3P(2)$	125° C	1.5 _h	48	12		21 12
	ς d)			115° C	3.5h	50		17	- 12.

a) The reaction was carried out in a degassed DMF and under Ar atmosphere. 200 mol% of K_2CO_3 was added. b) Molar ratio between ligand and Pd. c) The reaction was carried out in an air atomosphere. d) 100 mol% of n-Bu₄NCl and 300 mol % of K_2CO_3 were added.

Table 2. Results of biaryl coupling reactions of 1*-*(2-halo-4,5-dimethoxybenzyl)-2,3 dihydroindole (**17**). *a)*

							yield $(\%)$				
substrate		Pd $(OAc)_2$ (mol%)	ligand $(L/Pd)^{b}$	temp.	time	$\overline{2}$	$\boldsymbol{4}$	22	23		
17a		10	$P(o-tol)3(2)$	140° C	2 h	28	13	28	-18		
	2	10	Cy ₃ P(2)	125° C	1 _h	45	13	26	-3		
	3^c	20	$P(o-tol)3(2)$	125° C	3 h	trace	34		-10		
17 _b	4		$Cy_3P(2)$	125° C	1 _h	24	10	33	$\overline{4}$		
	ς d)			125°C	4 h	43	6		11		

a) The reaction was carried out in a degassed DMF and under Ar atmosphere. 200 mol% of K_2CO_3 was added. b) Molar ratio between ligand and Pd. c) The reaction was carried out in an air atomosphere. d) 100 mol% of n-Bu₄NCl and 300 mol % of K_2CO_3 were added.

the amine to Pd(II), followed by the regioselective electrophilic substitution of Pd(II) at the C_7 position of the dihydroindole moiety (forming a four-membered palladacycle)¹³ and the reductive elimination of

 $Pd(0)$.

The starting materials (**16**¹⁴ and **17**¹⁴) for the synthesis of anhydrolycorine (**1**) and assoanine (**2**) were prepared from dihydroindole and the 2-halobenzyl bromides (18a, ^{15a} 18b, ^{15b} 19, ^{15c} and 19b^{15d}) in the presence of *i*-Pr₂NEt in dry CH₃CN at 70[°]C, in 64~91% yield. The intramolecular coupling reaction of 1-(2-bromobenzyl)-2,3-dihydroindole (**16a**¹⁴ and **17a**¹⁴) and 1-(2-iodobenzyl)-2,3-dihydroindole (**16b**¹⁴ and **17b**¹⁴) using Pd were examined; the results are summarized in Tables 1 and 2. The reaction of **16a** with Pd(OAc)₂, P(o -tol)₃, and K₂CO₃ in a degassed DMF under an Ar atmosphere gave 1^{16a} , ¹⁷ and anhydrolycorin-7-one (3) ^{16a, 17} in 37% and 15% yield, respectively, along with 20^{14} and 21^{14} (run 1, Table 1), and the reaction under an air atmosphere gave **3** in 45% yield (run 3, Table 1). 16a, ¹⁸ The reaction of **17a** with Pd(OAc)₂, P(o -tol)₃, and K₂CO₃ in a degassed DMF under an Ar atmosphere gave $2^{16d, 17}$ and oxoassoanine (4) ^{16c, 17} along with 22^{14} and 23^{14} (run 1, Table 2), and the reaction under an air atmosphere gave **4** in 34% yield (run 3, Table 2).¹⁸. The reaction of **16a** and **17a** using PCy₃ as a ligand gave the coupling products in better yield (runs 2, Tables 1 and 2). 16c

Subsequently, the biaryl coupling reaction of $16b¹⁴$ and $17b¹⁴$, which are more reactive than bromo compounds, was examined, in order to improve the yield, but the yields were not improved. (runs 4, Tables 1 and 2) In these cases, Jeffery's conditions¹⁸ gave the coupling products in higher yields. (runs 5, Tables 1 and 2)

In conclusion, the concise synthesis of pyrrolophenanthridine alkaloids was accomplished by applying a strategy utilizing regioselective C-H activation by the intramolecular coordination of the benzylamino group to Pd. 11

ACKNOWLEDGEMENT

The authors are indebted to the SC-NMR Laboratory of Okayama University for the NMR spectral measurements.

REFERENCES AND NOTES

- 1 a) S. C. Chattopadhyay, U. Chattopadhyay, P. P. Marthur, K. S. Saini, and S. Ghosal, *Planta Med*., 1983, **49**, 252; b) G. R. Petti, V. Gaddamidi, A. Goswani, and G. M. Cragg, *J. Nat. Prod*., 1984, **47**, 796; c) S. Ghosal, R. Lochan, Ashutosh, Y. Kumar, and R. S. Srivastava, *Phytochemstry*, 1985, **24**, 1825; d) R. K. Y. Zee-Cheng, S.-J. Yan, and C. C. Chen, *J. Med. Chem.,* 1978, **21**, 199; e) C. C. Chen and R. K. Y. Zee-Cheng, *Heterocycles*, 1981, **15**, 1275.
- 2 a) O. Hoshino, "The Alkaloids" Vol. 51, ed. by G. A. Cordell, Academic Press, New York, **1998**, pp. 323-424; b) J. R. Lewis, *Nat. Prod. Rep*., 2000, **17**, 57; c) J. R. Lewis, *Nat. Prod. Rep*., 1998, **15**, 107; d) S. E. Wolkenberg and D. L. Boger, *J. Org. Chem*., 2002, **67**, 7361; e) D. L. Boger and S. E.

Wolkenberg, *J. Org. Chem*., 2000, **65**, 9120; f) D. C. Harrowven, D. Lai, and M. C. Lucas, *Synthesis*, **1999**, 1300 and references cited therein; g) A. Padwa, M. A. Brodney, B. Liu, K. Satake, and T. Wu, *J. Org. Chem*., 1999, **64**, 3595.

- 3 Y. Miki, H. Shirokoshi, and K. Matsushita, *Tetrahedron Lett*., 1999, **40**, 4347 and references cited therein.
- 4 a) D. C. Black, P. A. Keller, and N. Kumar, *Tetrahedron*, 1993, **49**, 151; b) D. C. Black, P. A. Keller, and N. Kumar, *Tetrahedron Lett*., 1989, **30**, 5807; c) T. Itatani, *Synthesis*, **1979**, 151.
- 5 a) H. W. Shao and J. C. Cai, *Chinese Chem. Lett*., 1996, **7**, 13; b) A. P. Kozikowsky and D. Ma, *Tetrahedron Lett*., 1991, **32**, 3317; c) S. J. Garden, J. C. Torres, and A. C. Pinto, *J. Braz. Chem. Soc*., 2000, **11**, 441.
- 6 a) T. Sakamoto, A. Yasuhara, Y. Kondo, and H. Yamanaka, *Heterocycles*, 1993, **36**, 2597; b) R. Grigg, A. Teasdale, and V. Sridharan, *Tetrahedron Lett*., 1991, **32**, 3859.
- 7 a) T. Harayama, T. Akiyama, H. Akamatsu, K. Kawano, H. Abe, and Y. Takeuchi, *Synthesis*, **2001**, 444; b) T. Harayama, H. Akamatsu, K. Okamura, T. Miyagoe, T. Akiyama, H. Abe, and Y. Takeuchi, *J. Chem. Soc., Perkin Trans. 1*, **2001**, 523; c) T. Harayama and K. Shibaike, *Heterocycles*, 1998, **49**, 191; d) T. Harayama, T. Akiyama, Y. Nakano, H. Nishioka, H. Abe, and Y. Takeuchi, *Chem. Pharm. Bull*., 2002, **50**, 519; e) T. Harayama, T. Akiyama, Y. Nakano, K. Shibaike, H. Akamatsu, A. Hori, H. Abe, and Y. Takeuchi, *Synthesis*, **2002**, 237; f) T. Harayama, T. Sato, Y. Nakano, H. Abe, and Y. Takeuchi, *Heterocycles*, 2003, **59**, 293; g) T. Harayama, A. Hori, Y. Nakano, T. Akiyama, H. Abe, and Y. Takeuchi, *Heterocycles*, 2002, **58**, 159.
- 8 The biaryl coupling reaction of 1-benzoyl-7-iodo-2,3-dihydroindole with $Pd(OAc)_{2}$, *n*-Bu₃P, diphenylphosphinopropane, and Ag_2CO_3 in DMF under reflux for 30 min^{7d} gave 10 in 79% yield. However, the reaction of **9** under the same conditions gave a mixture of **9** and an unidentified compound.
- 9 Phosphine ligand is generally required for the Heck-type reaction of bromoarene¹⁰ and we could not reproduce Cai's results. 5a
- 10 a) R. F. Heck, *Organic Reactions*, ed. by W. G. Daube, John Wiley & Sons. Inc., New York, **1982**, Vol. 27, pp. 345-390; b) W. Cabri and I. Candiani, *Acc. Chem. Res*., 1995, **28**, 2.
- 11 T. Harayama, T. Sato, A. Hori, H. Abe, and Y. Takeuchi, *Synlett*, **2003**, 1141.
- 12 a) A. C. Cope and E. C. Friedrich, *J. Am. Chem. Soc*., 1968, **90**, 909; b) M. I. Bruce, *Ang. Chem., Int. Ed. Engl*., 1977, **16**, 73.
- 13 D. Solé, L. Valverde, X. Solans, M. Font-Bardía, and J. Bonjoch, *J. Am. Chem. Soc*., 2003, **125**, 1587.
- 14 **16a** : mp 66-67°C; ¹H-NMR (200 MHz, CDCl₃) δ=3.01 (2H, t, *J*=8.3), 3.41 (2H, t, *J*=8.0), 4.21 (2H, s). **16b** : mp 74.5-75.5[°]C; ¹H-NMR (200 MHz, CDCl₃) δ=3.02 (2H, t, *J*=8.1), 3.40 (2H, t, *J*=8.1), 4.15

(2H, s). **17a** : mp 68-69°C; ¹H-NMR (200 MHz, CDCl₃) δ=3.01 (2H, t, *J*=8.3), 3.38 (2H, t, *J*=8.32), 4.23 (2H, s). **17b** : mp 93-94°C; ¹H-NMR (200 MHz, CDCl₃)[;]δ=3.01 (2H, t, *J*=8.2), 3.40 (2H, t, *J*=8.2), 4.20 (2H, s). **20** : oil; ¹ H-NMR (200 MHz, CDCl3) d=2.96 (2H, t, *J*=8.2), 3.29 (2H, t, *J*=8.2), 4.16 (2H, s). **21** : mp 82-83˚C; ¹ H-NMR (200 MHz, CDCl3) d=5.22 (2H, s), 6.53 (1H, d, *J*=3.4), 7.12 (1H, d, *J*=3.4). **22** : mp 77-78˚C ; ¹ H-NMR (200 MHz, CDCl3) d=2.97 (2H, t, *J*=8.0), 3.33 (2H, t, *J*=8.0), 4.21 (2H, s). **23** : mp 61.5-62.5˚C; ¹ H-NMR (200 MHz, CDCl3) d=5.25 (2H, s), 6.53 (1H, d, *J*=3.6), 7.11 (1H, d, *J*=3.6).

- 15 a) W. F. Barthel and B. H. Alexander, *J. Org. Chem*., 1958, **23**, 1012; b) J. Cossy, L. Tresnard, and D. G. Pardo, *Eur. J. Org. Chem*., **1999**, 1925; c) Y. Landais, J. P. Robin, and A. Lebrum, *Tetrahedron*, 1991, **47**, 3787; d) A. A. Pletnev and R. C. Larock, *J. Org. Chem*., 2002, **67**, 9428.
- 16 a) J. W. Cook, J. D. Loudon, and P. McCloskey, *J. Chem. Soc*., **1954**, 4176; b) H. Hara, O. Hoshino, and B. Umezawa, *Tetrahedron Lett*., **1972**, 5031; c) H. F. Fales, L. D. Giuffrida, and W. C. Wildman, *J. Am. Chem. Soc*., 1956, **78**, 4145; d) J. S. Parnes, D. S. Cartner, L. J. Kurz, and L. A. Flippin, *J. Org. Chem*., 1994, **59**, 3497.
- 17 **Anhydrolycorin** (**1**) **:** mp 110-112.5˚C (lit., 16a 108-111˚C). **Anhydrolycorin-7-one** (**3**) **:** mp 236- 237˚C (lit., 16b 232-234˚C). **Assoanine** (**2**) **:** mp 165.5-168˚C (lit., 16d 175-176˚C). **Oxoassoanine** (**4**) **:** mp 272.5-274.5˚C (lit., 16d 271-272˚C). It is known that the compounds (**1** and **3**) were easily oxidized in an air to produce 2^{16a} and 4^{16c} , repectively. The ¹H-NMR spectral data of the synthetic samples were identical with the reported data of the authentic samples.^{16b, 16d}
- 18 The reaction of **16a** under an oxygen atmosphere, to accelerate the oxidation, afforded **3** only in 21% yield.
- 19 a) T. Jeffery, *J. Chem. Soc., Chem. Commun*., **1984**, 1287; b) T. Jeffery, *Synthesis*, **1987**, 70; c) T. Jeffery, *Tetrahedron*, 1996, **52**, 10113.