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SHORT SYNTHESES OF MELATONIN
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Abstract - The chemistry concerning the most recent syntheses of melatonin (N-
acetyl-5-methoxytryptamine) is described.

INTRODUCTION
Biological time is measured in Circadian rhythms on a scale of 24 hours and these rhythms are generated
by molecular mechanisms that are present in many different tissues around the body. This concert of
rhythms is synchronized by the master clock found in the brain which controls time-dependent rhythms
according to light impacting from the environment. The production of melatonin is an expression of
Circadian rhythmic activity and may also reflect Circadian control by the master clock.

Melatonin Synthesis
For the laboratory synthesis of melatonin1 (N-acetyl-5-methoxytryptamine), the preparation of 5-
methoxytryptamine in a one pot reaction is desirable but this has been a low yielding reaction because of
the problems associated with making the required aminobutanal. Two research groups have developed
different strategies to improve this chemistry.

Marais and Holzapfel,2 by generating cyclic enamides and carbinolamines which act as surrogates for N-
acylbutanal  and Sheldon and coworkers3 who used catalytic conditions to selectively hydroformylate N-
allylacetamide to furnish the elusive 4-acetamidobutanal, have completed short syntheses of melatonin.

The cyclic enamides as synthetic equivalents of amino aldehydes were prepared from pyrrolidine by
oxidation in aqueous alkaline peroxodisulfate and 0.5% silver nitrate to form the trimer which on heating
with an acyl chloride directly formed the enamides. This was followed by Fischer-indole synthesis with
p-methoxyphenylhydrazine hydrochloride in aqueous acetic acid-ethanol mixture under reflux for 20 min.
Melatonin (Scheme 1A) was isolated in overall 26% yield.
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An efficient extension of this approach was achieved by starting with 2-pyrrolidone and pyroglutamic
acid (Scheme 1B) providing carbamate deriatives of 5-methoxytryptamine (80%) and l-tryptophan (87%).
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The critical step in the second approach to melatonin synthesis was the investigation of the
hydroformylation conditions required to selectively convert N-allylacetamide into N-acetylbutanal.  Thus
in a one pot reaction sequence (Scheme 2), allylamine was acetylated, regioselectively hydroformylated
to provide N-acetylbutanal with the aid of Rh-Xantphos catalyst system in an inverted two phase
toluene/water solvent system. Subsequent hydrazone formation with 4-methoxyphenylhydrazine and
Fischer-indole synthesis yielded 44% melatonin when extracted from the aqueous phase. The
experimental details are available as electronic supplementary information from supplied website.
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Furthermore, a method for regioselectively hydroformylating functionalized anilines has been developed
by Dong and Busacca4, leading to the syntheses of tryptamines and tryptophol. Employing the Heck
reaction conditions, meta- and para- fuctionalized 2-haloanilines and N-tosylallylamine or N,N-di-Boc-
allylamine with Pd(OAc)2 catalysis were converted into Heck adducts which underwent hydroformylation
in the presence of H2/CO (1:1) and HRh(CO)(PPh3)3 to yield tryptamines or tryptophol (10 examples,
yields 32-73%) (Scheme 3)
The application of this Heck and hydroformylation reaction sequence with 2-bromo-4-methoxyaniline
and N-allylacetamide would make melatonin.
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Somei and coworkers5 have developed their N-hydroxyindole chemistry to transform tryptamine in six
steps into melatonin with an overall 55% yield. In the key step, the introduction of the 5-methoxy group
was achieved by reacting the substrate, 1-hydroxy-N-acetyltryptamine with 20 % BF3-methanol solution
and refluxing the mixture for 30-40 min.  (Scheme 4).
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Amat and coworkers6 recently described the preparation of 4-, 5-, and 6-methoxy substituted 3-lithio-1-
(trialkylsilyl) indoles and their reaction with electrophiles. When N-tosyl aziridine was the electrophile
(Scheme 5), their methodology produced melatonin in overall 11% yield.
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Om Reddy and coworkers7 have revisited literature syntheses of melatonin with the objective of
developing a cost effective and industrial process that avoids the use of expensive chemicals,  is a short
process,  has no low yielding steps and requires limited purification of intermediates and products.
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Using the Japp Klingemann reaction to form the tryptamine ring system, the six step process (Scheme 6)
has been carefully optimized, yielded 65% melatonin in ~99.5% purity and has been performed on 5-10
kg scale.

In a new approach to the synthesis of melatonin and related compounds, Pfau and coworkers8 found that
the Michael addition of the N-cyclohexylimine of commercial1,4-cyclohexanedione mono- ethylene ketal
with maleic anhydride as shown in Scheme 7 provides the indole-3-acetic acid skeleton. This was
followed by the reaction sequence: esterification, transacetalization and aromatization which produced the
key  compound methyl 1-benzyl-5-methoxy-1 H-indole-3-acetate in 74% yield from the starting material
without purification of the intermediates. Side chain transformations and indole-N-deprotection gave
melatonin in around 20% overall yield.
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Sortais and coworkers9 have applied their free radical reaction methodology to a route to indolines which
was elaborated to give in seven steps a 32% overall yield of melatonin as illusrated in Scheme 8. The first
step involved an intermolecular catalytic radical addition of a xanthate to a protected N-allylaniline which
was followed by stoichiometric radical formation and indoline ring closure. The three carbon ester side
chain was hydrolysed and the acid underwent a Curtius rearrangement using diphenylphosphoryl azide, in
situ acetylation followed by simultaneous N-mesyl group deprotection / aromatization using 95%
concentrated sulfuric acid. Alternatively, when the indoline ring was aromatized prior to the  side chain
refunctionalisation, the six step sequence gave slightly lower yields of melatonin.

           

Scheme 8

MeO

N

OEt

O
SCSOEt

SO2Me

+

 0.2 eq. Lauroyl peroxide

1,2-dichloroethane, reflux

MeO

N

OEt

O

SCSOEt

SO2Me

N
SO2Me

EtO

O
MeO

N
H

HO

O
MeO

79%

1.2 eq. Lauroyl peroxide
1,2-dichloroethane, reflux

73%

95% H2 SO4

O0C, 30 min

81%

             

N
H

MeO

N
SO2Me

AcHN

MeO
AcHN

O0C, 30 min

95% H2 SO4

72%

1. conc. HCl, rt
2. [PhO]2P(O)N3,
    Et3N, THF, rt
3. Ac2O / AcOH 5/95
    reflux
4. K2CO3 , MeOH, rt

1. [PhO]2P(O)N3,
    Et3N, THF, rt
2. Ac2O / AcOH 5/95
    reflux
3. K2CO3 , MeOH, rt

69% 32%

overall 32%
      
In the last five years, there have been new approaches and improvements to existing methods of
tryptamine synthesis. This has translated into shorter routes and more efficient methods of melatonin
synthesis as summarized in the Table.



Table

Novelty of Method Synthetic Steps % Melatonin Researchers

Use of N-acetylbutanal
surrogate

3 26 Marais and
Holzapfel

Generation of N-
acetylbutanal

3 steps, one pot 44 Sheldon and
coworkers

Hydroformylation of
anilines

3 32-73 [tryptamines] Dong and
 Busacca

5-Methoxy group
introduction

6 55 Somei and
coworkers

Ethanamide side chain
introduction

7 11 Amat and
 coworkers

Large scale synthesis 6 65 Om Reddy et al.

Michael addition,
indole ring formation

9 21 Pfau et al.

Free radical synthesis
of indolines

7 32 Sortais and
coworkers
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