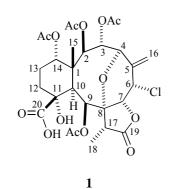
JUNCIN N, A NEW BRIARANE-TYPE DITERPENOID FROM THE GORGONIAN CORAL JUNCEELLA JUNCEA

Ping-Jyun Sung,^{*,a} Tung-Yung Fan,^a Lee-Shing Fang,^a Jyh-Horng Sheu,^b Shwu-Li Wu,^{b,c} Guey-Horng Wang,^d and Mei-Ru Lin^a

^aNational Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung 944, Taiwan, R.O.C. E-mail: pjsung@nmmba.gov.tw

^bDepartment of Marine Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C.

^cDepartment of General Studies, National Kaohsiung Institute of Marine Technology, Kaohsiung 811, Taiwan, R.O.C.


^dCenter for General Education, Hsing-Kuo University, Tainan 709, Taiwan, R.O.C.

Abstract – A new chlorinated briarane-type diterpenoid, juncin N (1), has been isolated from the gorgonian coral *Junceella juncea*. The structure, including the relative configuration of the new compound (1), was elucidated by the combination of extensive spectral data analysis, especially in 1D and 2D NMR.

In the previous studies by others, a series of briaranes, including juncins A–M, have been isolated from the gorgonian coral *Junceella juncea* (Pallas) (phylum Coelenterta, class Anthozoa, subclass Octocorallia, order Gorgonacea, family Ellisellidae) within the past 14 years.^{1–8} Compounds of this type continue to intrigue investigators because of the structural novelty and various biological activities.⁹ In this paper, we report here a new chlorine-containing polyoxygenated briarane, juncin N (**1**), from the gorgonian *J. juncea*, collected off Southern Taiwan coast.

The molecular formula of juncin N (1) was determined as $C_{28}H_{35}O_{14}Cl$ by its HRFABMS. Thus, 11 degrees of unsaturation were determined for 1. The IR spectrum showed bands at 3520, 3418, 1792, and 1744 cm⁻¹, consistent with the presence of carboxyl, hydroxy, γ -lactone, and ester carbonyl groups in 1. The FABMS of 1 exhibited peaks at m/z 633 (0.3, M + H)⁺, 631 (1, M + H)⁺, 615, 613 (M + H – H₂O)⁺, 573, 571 (M + H – HOAc)⁺, 513, 511 (M + H – 2HOAc)⁺, 453, 451 (M + H – 3HOAc)⁺, 393, 391 (M + H – 4HOAc)⁺, 375, and 373 (M + H – 4HOAc – H₂O)⁺, which suggested the presence of a chlorine atom, a hydroxy, and four acetoxy groups in 1. From the ¹³C NMR spectral data of 1 (Table 1), the presence of

an exocyclic carbon-carbon double bond was deduced from the signals of two carbons resonating at δ 133.8 (s) and 119.9 (t). Furthermore, in the ¹³C NMR spectrum, six carbonyl resonances appeared at δ 191.2 (s), 174.5 (s), 170.2 (s), 169.7 (s), 169.7 (s), and 169.6 (s), confirming the presence of a carboxyl, a γ -lactone, and four esters in **1**. In the ¹H NMR spectrum (Table 1), a carboxylic acid proton (δ 9.25, s) and four acetate methyls (δ 2.38, 3H, s; 2.08, 3H, s; 2.05, 3H, s; 2.00, 3H, s) were observed. Thus, the ¹³C NMR spectral data accounted for seven degrees of unsaturation and required **1** to be tetracyclic. The ¹H NMR spectrum also showed the presence of two methyl groups, including a methyl attached to a methine carbon (δ 1.46, d, *J* = 7.0 Hz, H₃-18) and a methyl attached to a tertiary carbon (δ 1.15, s, H₃-15).

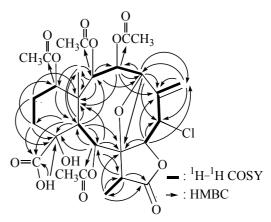


Figure 1. ¹H-¹H COSY and HMBC Correlations for 1.

The gross structure of **1** and all of the ¹H and ¹³C NMR spectral data associated with the molecule were determined by the assistance of 2D NMR experiments. From the ${}^{1}H{-}^{1}H$ COSY spectra of 1 (Figure 1), it was possible to establish the proton sequences form H-2/H-3; H-3/H-4; H-6/H-7; and H-9/H-10. These data, together with the HMBC correlations between H-2/C-1, C-3, C-4; H-3/C-1, C-4, C-5; H-4/C-3, C-5, C-6; H-7/C-5, C-6, C-8; H-9/C-1, C-8, C-10; and H-10/C-1, C-2, C-8, C-9 (Figure 1), established the connectivity from C-1 to C-10 within the ten-membered ring. An exocyclic carbon-carbon double bond attached at C-5 was confirmed by the HMBC correlations between H-4/C-16; H-7/C-16; and H₂-16/C-4, C-5, C-6. The cyclohexane ring, which is fused to the ten-membered ring at C-1 and C-10, was elucidated by the key HMBC correlations between H-9/C-11; H-10/C-11, C-12; H₂-13/C-1; and H-14/ C-10. The ring juncture C-15 methyl group was positioned at C-1 from the HMBC correlations between H-2/C-15; H-10/C-15; and H₃-15/C-1, C-2, C-10, C-14. The carboxyl and hydroxy groups positioned at C-11 were determined by the connectivity between the carboxylic acid proton (δ_H 9.25, 1H, s) and a tertiary oxygen-bearing carbon ($\delta_{\rm C}$ 77.7, s, C-11) and further confirmed by the HMBC correlations between H-9/C-11; H-10/C-11, C-20; H₂-12/C-11, C-20; and H₂-13/C-11. The ether bridge between C-4 and C-8 was identified by an HMBC correlation between H-4 (δ_H 4.47, d, J = 11.0 Hz) and C-8 (δ_C 82.9, s). Furthermore, the HMBC correlations also revealed the positions of four acetoxy groups attached at

C-2, C-3, C-9, and C-14. These data, together with the HMBC correlations between H-9/C-17; H-17/C-9, C-18, C-19; and H₃-18/C-8, C-17, C-19, unambiguously established the molecular framework of **1**.

Table I. H and	C INMIK Spectral Data for Junchi IN (1).	
Position	$^{1}\mathrm{H}^{a}$	$^{13}C^b$
1		47.5 $(s)^d$
2	$5.35 (1H, d, J = 6.0 Hz)^c$	72.6 (d)
3	6.21 (1H, dd, J = 11.0, 6.0 Hz)	63.7 (d)
4	4.47 (1H, d, J = 11.0 Hz)	78.4 (d)
5		133.8 (s)
6	5.06 (1H, d, J = 2.5 Hz)	53.7 (d)
7	4.45 (1H, d, $J = 2.5$ Hz)	78.9 (d)
8		82.9 (s)
9	6.61 (1H, s)	74.3 (d)
10	3.01 (1H, s)	46.4 (d)
11		77.7 (s)
$12\alpha/\beta$	2.28 (1H, m); 2.52 (1H, dt, J = 13.5, 3.0 Hz)	31.0 (t)
13	1.85 (2H, m)	24.0 (t)
14	4.99 (1H, br s)	73.1 (d)
15	1.15 (3H, s)	15.5 (q)
16a/b	5.59 (1H, d, $J = 2.0$ Hz); 5.37 (1H, d, $J = 2.0$ Hz)	119.9 (t)
17	2.94 (1H, q, J = 7.0 Hz)	49.2 (d)
18	1.46 (3H, d, J = 7.0 Hz)	8.5 (q)
19		174.5 (s)
20		191.2 (s)
acid proton	9.25 (1H, s)	
acetate methyls		
$2-OCOCH_3$	2.38 (3H, s)	21.1 (q)
3-OCO <i>CH</i> 3	2.08 (3H, s)	20.9 (q)
9-OCO <i>CH</i> 3	2.05 (3H, s)	20.4 (q)
14-OCO <i>CH</i> 3	2.00 (3H, s)	20.4 (q)
acetate carbonyls	6	
2-OCOCH ₃		169.7 (s)
3-OCOCH ₃		169.7 (s)
9-OCOCH ₃		170.2 (s)
14-OCOCH ₃		169.6 (s)
da en la la social de la social		

Table 1. ¹H and ¹³C NMR Spectral Data for Juncin N (1).

^{*a*}Spectra recorded at 500 MHz in CDCl₃ at 25 °C. ^{*b*}125 MHz in CDCl₃ at 25 °C. ^{*c*}J values (in Hz) in parentheses. ^{*d*}Multiplicity deduced by DEPT and indicated by usual symbols. The values are in ppm downfield from TMS.

The relative stereochemistry of **1** was elucidated from a NOESY experiment (Figure 2). Strong NOE correlations were observed between H-10 and H-2, H-9, and H₃-18; while H-2 showed a NOE correlation to H-4 suggesting that all these protons were on the same side of the molecule. This face was assigned as the α face since the C-15 methyl is normally assigned as a β -substituent at C-1. The H-3 and H-14 protons showed NOE correlations with H₃-15, but not with H-10, revealing the β -orientation of these protons. The H-7 signal showed NOE correlations with H-6, H-9, and H-17, and H-9 showed a NOE response with H-17. Consideration of molecular models revealed that H-7 is reasonably close to H-6, H-9,

and H-17 when H-6, H-7, and H-17 are β -oriented and H-9 is placed on the α face. The acid group at C-11 was placed in the β face by the NOE correlations between the acid proton (δ_H 9.25) with H₃-15 and H-12 β . Thus, the hydroxy group at C-11 must be α -oriented. Based on above results, the structure of **1**, including the relative configuration, was elucidated unambiguously. To the best of our knowledge, juncin N (**1**) is the first briarane derivative containing a carboxylic acid group.

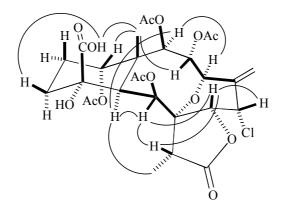


Figure 2. Key NOESY Correlations for 1.

Although many briarane-based diterpenoids have been shown to exhibit various biological activities,⁹ juncin N (1) was found not to be cytotoxic toward a limited panel of tumor cell lines. These cells are P-388D1 (mouse lymphoid neoplasm), DLD-1 (human colon adenocarcinoma), IMR-32 (human neuroblastoma), RPMI 7951 (human malignant melanoma), and CCRF-CEM (human T-cell acute lymphoblastic leukemia) cells.

EXPERIMENTAL

General Experimental Procedures. Melting points were determined using a Fargo melting point apparatus and was uncorrected. Optical rotation values were measured on a JASCO DIP-370 digital polarimeter. IR spectra were recorded on a JASCO FT/IR-5300 infrared spectrophotometer. FABMS were obtained on a VG QUATTRO GC/MS spectrometer. HRFABMS were recorded on a JEOL JMS SX/SX 102A mass spectrometer. The NMR spectra were recorded with a VARIAN UNITY INOVA 500 FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, in CDCl₃, using TMS as an internal standard. Silica gel (Merck, 230–400 mesh) was used during column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F_{254}) were used for analytical TLC. All solvents used were either freshly distilled or of analytical grade.

Animal Material. The gorgonian *J. juncea* were collected by hand using scuba in Dec. 2002, off the Southern Taiwan coast at depths of 16 m. This organism was identified by comparison with descriptions.^{10–12} Living reference specimens are being maintained in the authors' tanks and a voucher specimen was deposited at the National Museum of Marine Biology and Aquarium (specimen no. TWGC–003).

Extraction and Isolation. The gorgonian *J. juncea* (wet weight 0.70 kg) was freeze-dried soon after collection. The freeze-dried material (0.45 kg) was minced and extracted with EtOAc (6×500 mL) for 120 h at 25 °C. The EtOAc extract (7.2 g) was separated by silica gel column chromatography using hexanes and hexanes–EtOAc mixtures of increasing polarity. Juncin N (1) was eluted with hexanes–EtOAc (2:1).

Juncin N (1): white powder (0.7 mg); mp 214–216 °C (EtOAc); $[\alpha]_D^{25}$ +18° (*c* 0.3, CHCl₃); IR (neat, CHCl₃) v_{max} 3520, 3418, 1792, and 1744 cm⁻¹; ¹H and ¹³C NMR, see Table 1; FABMS *m/z* 633 (0.3, M⁺ + H), 631 (1, M⁺ + H), 615, 613, 573, 571, 513, 511, 453, 451, 393, 391, 375, and 373; HRFABMS *m/z* 631.1799 (calcd for C₂₈H₃₅O₁₄Cl + H, 631.1794).

Cytotoxicity Testing. The cytotoxicity of tested compound (1) was assayed with a modification of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric method. Cytotoxicity assays were carried out according to the procedures described previously.¹³

ACKNOWLEDGMENT

The authors would like to thank Ms. Chao-Lein Ho and Shiu-Ching Yu, of the NSC Southern Instrument Center in National Sun Yat-Sen University for measurements of NMR and MS spectral data. This research work was supported by the grants from the National Science Council (contract no. NSC 91-2320-B-291-001) and the National Museum of Marine Biology and Aquarium of the Republic of China awarded to P.-J. Sung.

REFERENCES

- 1. S. Isaacs, C. Carmely, and Y. Kashman, J. Nat. Prod., 1990, 53, 596.
- 2. A. S. R. Anjaneyulu and N. S. K. Rao, J. Chem. Soc., Perkin Trans., 1, 1997, 959.
- A. S. R. Anjaneyulu, V. L. Rao, V. G. Sastry, M. J. R. V. Venugopal, and F. J. Schmitz, *J. Nat. Prod.*, 2003, 66, 507.
- 4. Y.-C. Shen, Y.-C. Lin, and M. Y. Chiang, J. Nat. Prod., 2002, 65, 54.
- 5. Y.-C. Shen, Y.-C. Lin, C.-L. Ko, and L.-T. Wang, J. Nat. Prod., 2003, 66, 302.
- N. Krishna, P. Muralidhar, M. M. K. Kumar, D. V. Rao, and CH. B. Rao, *Asian J. Chem.*, 2003, 15, 344.
- P.-J. Sung, T.-Y. Fan, M.-C. Chen, L.-S. Fang, M.-R. Lin, and P.-C. Chang, *Biochem. Syst. Ecol.*, 2004, 32, 111.
- P.-J. Sung, H.-H. Gwo, T.-Y. Fan, J.-J. Li, J. Dong, C.-C. Han, S.-L. Wu, L.-S. Fang, *Biochem. Syst. Ecol.*, 2004, 32, in press, and references cited therein.
- 9. P.-J. Sung, J.-H. Sheu, and J.-P. Xu, *Heterocycles*, 2002, 57, 535, and references cited therein.

- 10. C.-C. Chen and K.-H. Chang, Bull. Inst. Zool., Academia Sinica, 1991, 30, 149.
- 11. F. M. Bayer and M. Grasshoff, Senckenbergiana Biol., 1994, 74, 21.
- 12. F. M. Bayer, Proc. Biol. Soc. Wash., 1981, 94, 902.
- M. C. Alley, D. A. Acudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemark, and M. R. Boyd, *Cancer Res.*, 1988, 48, 589.