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Abstract – A total synthesis of a new furo[3,2-h]isoquinoline alkaloid, TMC-
120B (2) has been completed in sixteen steps. The key step is the synthesis of
7,8-disubstituted isoquinoline (17) based on the thermal electrocyclic reaction of
1-azahexatriene system involving the benzene 1,2-bond.

Three new furo[3,2-h]isoquinoline alkaloids, TMC-120A (1), B (2), and C (3) were isolated from a
fermentation broth of Aspergillus ustus TC 1118 (Chart 1).1 Their structures have been determined by
extensive spectroscopic and chemical analyses. TMC-120C (3) is the racemic compound, and an absolute
configuration of the chiral compound (1) has not yet been ascertained. In addition, the structure of 
TMC-120B (2) has been also elucidated by X-Ray analysis. TMC-120B (2) shows moderate inhibitory 
activity against the interleukin-5 mediated prolongation of eosinophil survival (IC50=2.0mM).

We have been performing synthetic studies of biologically active condensed heteroaromatic 
compounds including natural products through the construction of functionalized frameworks based on 
the thermal electrocyclic reaction2 of either a 6p-electron3,4 or an aza 6p-electron3,5 system incorporating

the heteroaromatic or aromatic portion. In our research program, we planned a total synthesis 
of TMC-120A (1), B (2), and C (3).
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In this paper, we here describe the first total synthesis of TMC-120B (2) through the synthesis of 7,8-
disubstituted isoquinoline nucleus by an application of an aza 6p-electrocyclic reaction3,4 of a 1-
azahexatriene system, involving the benzene 1,2-bond. We chose the known 2,4-dimethoxymethyl(di-
MOM)oxybenzaldehyde (4)6 as a starting material. As shown in Scheme 1, reduction of benzaldehyde (4)
with sodium borohydride in EtOH, followed by treatment of the resulting alcohol (5: 90%)7 with tert-
butyldimethylsilyl chloride (TBDMSCl) in the presence of imidazole in DMF gave the TBDMS ether (6)
(85%). The ether (6) was treated with n-BuLi in THF, and the resulting lithio compound8 was then
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Scheme 1.  Reagent  and conditions : (i) NaBH4, EtOH, rt, 2 h (90%), (ii) TBDMSCl, 
imidazole, DMF, rt, 12 h (85%), (iii) n-BuLi, THF, 40 min and then DMF, 0oC, 20 min 
(75%), (iv) MeONH2・HCl, AcONa, EtOH, 80oC, 12 h (89%), (v) TBAF, THF, rt, 1.5 h 
(92%), (vi) act. MnO2, CH2Cl2, rt, 24 h (89%), (vii) conc. HCl, MeOH, 0oC, 3 h (92%), 
(viii) NaH, DMF, BrCH2COOMe, rt, 12 h (93%), (ix) AcOH, 90oC, 12 h (80%), (x) Tf2O, 
pyridine, CH2Cl2,  0oC, 4 h (85%), (xi) Me-CH=CH-SnBu3, Et4NCl, PdCl2(PPh3)2, DMF, 
80 oC, 4 h (83%), (xii) 180oC, o-dichlorobenzene, 30 min (44%).
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quenched with DMF to yield the benzaldehyde derivative (7) (75%). The reaction of the aldehyde (7)
tetrabutylammonium fluoride (TBAF) in THF to give benzyl alcohol (9) (92%). Oxidation of 9 with with
hydroxylamine methyl ether in EtOH gave oxime methyl ether (8) (89%), which was treated with
activated manganese dioxide (MnO2) in CH2Cl2 afforded the benzaldehyde derivative (10) (89%), but a
direct conversion of a formyl group of 10 into the methyl ester (11) failed. On the other hand, treatment
of 10 with conc. HCl in MeOH at 0oC selectively produced 2-hydroxybenzaldehyde derivative (12)
(92%), which was converted into the ether (13) by means of methyl bromoacetate with sodium hydride
(93%). The cleavage of MOM-ether (13) in acetic acid at 90oC successfully provided the 4-
hydroxybenzaldehyde (14) (80%), and sequential treatment of 14 with trifluoromethanesulfonic
anhydride (Tf2O) and pyridine at 0oC then gave the triflate (15) (85%). The palladium-catalyzed cross-
coupling reaction of 15 with tributyl 1-propenyltin in the presence of PdCl2(PPh3)2 in DMF at 80oC
afforded the appropriate o-propenyl aldoxime methyl ether (16) (83%) as a 1-aza 6p-electron system.
The thermal electrocyclic reaction of 16 was carried out in o-dichlorobenzene at 180oC3,5 to produce the
desired 7,8-disubstituted isoquinoline (17) in a somewhat low yield (44%).
For the formation of the furanone ring by Dieckmann condensation (Scheme 2), 7-formylisoquinoline
(17) was converted into the methyl ester (18) using sodium cyanide, MnO2, and acetic acid in MeOH
according to Corey’s procedure9 (83%). The cyclization of 18 with sodium methoxide in MeOH at 80oC
gave the b-keto ester (19) (66%), which was treated with lithium hydroxide in aqueous DMSO at 70oC10

to yield the expected furanone (20) (75%). Finally, the reaction of 20 with acetone in the presence of
lithium diisopropylamide (LDA), followed by treatment with methanesulfonyl chloride (MsCl) and
dimethylaminopyridine (DMAP) in pyridine11 provided TMC-120B (2) (33%). The physical and
spectroscopic data of synthetic TMC-120B (2) agreed with those of natural TMC-120B (2) in all
respects.12
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Scheme 2.  Reagent and conditions : (i) NaCN, AcOH, MnO2, MeOH, rt, 4 h (83%), (ii) NaOEt, 
MeOH, 80oC, 12 h (66%), (iii) LiOH・H2O, DMSO-H2O, 70oC, 2 h (75%), (iv) LDA, Me2CO, 
THF, -78oC, 4 h; MeSO2Cl, DMAP, pyridine, 0oC, 2 h (33%).
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Thus, a first total synthesis of TMC-120B (2) was completed in sixteen steps through the construction of
the appropriate 7,8-disubstituted isoquinoline framework based on the thermal electrocyclic reaction of
the 1-azatriene system, followed by the formation of a furanone ring. Further studies of the total
syntheses of TMC-120A (1) and C (3) are now in progress.
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