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Abstract −  Serine and  oxalic acid were used as building blocks of natural origin 

to prepare 2,2′-bioxazole bearing methoxycarbonyl groups at  4,4′ positions. 

 

A 1,3-oxazole ring appeared to be widely distributed as a structure element of complex molecules 

occurring in nature, and many of the 1,3-oxazole derivatives are found to be biologically active.1 In a 

number of cases, the oxazole rings create, in a single biomolecule, a polyring system, of which usually 

two or three oxazoles are directly joined to each other by a bond between C-2 and C-4′ of the neighboring 

ring.2,3 In the natural polyoxazoles, the preferential points of attachment (C-2 and C-4), being close to 

nitrogen (N-3), is probably the result of a biosynthetic pathway, in which one α-amino acid molecule  

(e.g. serine) participates in the formation of both oxazole rings by the inclusion of its carboxylic carbon in 

the structure of one ring [as C(2)] and the remaining carbons and nitrogen of the serine molecule in the 

skeleton of the other one [C(4′), N(3′), C(5′)-O].  

Of interest was if the natural occurrence of 2,4′-bioxazole derivatives is only the result of the biogenetic 

restriction to a limited number of substrates, or, when using other simple naturally occurring chemical 

compounds, an isomeric product, unsubstituted 2,2′-bioxazole or its 4,4′-dimethoxycarbonyl derivative, 

can also be obtained, at least, on a biomimetic pathway. The known few examples of a chemical synthesis 

of C-2 and C-2′ joined two oxazole rings concern the system in which they are fused with benzene or are 

bearing either aryl or alkyl groups, like 4,4′,5,5′-tetramethyl-2,2′-bioxazole,4 2,2′-dibenzoxazole obtained 

either by a fotodehydrodimerization,5 or a couprous acetate oxidation,6 and 5,5′-diphenyl-2,2′-bioxazole7 

obtained by a dimerization of 5-phenyloxazole using butyllithium, hexachloroethane and a borane 

complexation procedure. The last method of the 2,2′ bond formation is an original one, and its adaptation 

to an unsubstituted oxazole8 could  be interesting,  but, similarly  to  the previously mentioned methods, it 



 

will not fulfil the requirements of the biomimetic character of a synthesis.  

To achieve our goal, we assumed the use of oxalic acid to afford the central bond in the final product, 

which should be formed by a symmetrical functionalization of both termini of the acid molecule. First, we 

tried to oxidize 2,2′-bioxazoline prepared by a cyclization of an intermediate, N,N′-bis(2-

hydroxyethyl)oxamide, according to the Wenker procedure,9 but the known methods which were proved 

to be perfect or, at least, satisfactory for a single oxazoline ring oxidation, failed in our case, leading to a 

decomposition of the starting material when NiO2, MnO2, DDQ or CuBr2 was used. Surprisingly, the 

bicyclic compound was inert to bromine oxidation, and, therefore, we tried to carry out such a synthesis, 

using 2,2′-bioxazoline, bearing methoxycarbonyl groups at C-4 and C-4′ in the molecule, of which the 

formation of the intermediate containing bromine and the α,β-unsaturated ester from it should be easier, 

because of the presence of the electrophilic substituent. 

In attempts to carry out a synthesis of such a bioxazoline derivative, diethyl oxalate was allowed to react  

with serine methyl ester and the resulting N,N′-bis(2-hydroxy-1-methoxycarbonylethyl)oxamide (1) was 

subjected to cyclodehydration by treating the product successively with thionyl chloride [to N,N′-bis- 

(2-chloro-1-methoxycarbonylethyl)oxamide], and, then, with triethylamine, from the result of which the 

occurrence of an elimination reaction, yielding N,N′-bis(1-methoxycarbonylvinyl)oxamide (2), was the 

only process observed. Similar results were obtained when 1 was allowed to react with mesyl chloride in 

the presence of triethylamine.  
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The ready formation of the undesirable, unsaturated product prompted us to verify the possibility of 

making use of this material. A bromine addition to both vinyl fragments of the molecule of 2 and, next, an 

elimination of one pair of hydrogen bromides should lead to a corresponding dibromobioxazoline 

formation, while the successive elimination of the second pair should change the oxazoline system into 

the final bioxazole derivative. Such a procedure was found to be successful only for a half of a molecule 

yielding indeed first N,N′-bis(1,2-dibromo-1-methoxycarbonylethyl)oxamide (3), which, however, when 

treated successively with triethylamine and cesium carbonate in MeOH was transformed  

into N-(2-bromo-1-methoxycarbonylvinyl)-4-bromo-4-methoxycarbonyl-2-oxazolinecarboxamide (4) and 

N-(2-bromo-1-methoxy-1-methoxycarbonylethyl)-4-methoxycarbonyl-2-oxazolecarboxamide (5),10 re-

spectively. 
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Finally, the synthesis of the desired bioxazole system was achieved by a dehydrative cyclization of 1 

under the influence of (diethylamino)sulfur trifluoride (DAST)11 to 4,4′-dimethoxycarbonyl-2,2′- 

bioxazoline (6),12 which, when treated with BrCCl3 in the presence of DBU, underwent oxidation to 4,4′-

dimethoxycarbonyl-2,2′-bioxazole (7).13,14 
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In summary, we have demonstrated that, based on oxalic acid and serine as a natural starting material, a 

synthesis of 2,2′-bioxazole, bearing substituents at 4 and 4′ positions, is possible. However, we also found 

that during such a symmetrically, simultaneously carried out construction of both the termini of the 

molecule being built, though remaining under identical external reactions conditions, the termini do not 

always behave in exactly the same manner, due to intramolecular interactions. Probably for the same 

reason, the two rings composing a 2,2′-bioxazoline molecule, often reveal different chemical properties 

from those of the separated, single ring. 
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