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INTRODUCTION  

Recently the number of publications dealing with synthesis of self-assembling molecules has been 

increasingly growing. Of special interest are the compounds having a molecular cavity. They can be used 

for creation of sensors, high-selective reagents for analytical chemistry.1-5 To increase the receptor ability 

and stability of a supramolecule a large surface of  “host-guest” interaction and their multicenter binding 



 

are necessary. In this context the introduction of heterocyclic fragments into macrocyclic system is very 

promising. It results in the coupling of different complexation centers in one molecule, which provides 

more effective linking “guest”-molecule. The grafting of a heterocyclic moiety leads to change of 

molecular cavity size and receptor ability of compounds. On the other hand the introduction of lipophilic 

fragments into pharmacophore heterocycles affects membranotropic properties of obtained compounds and 

their biological activity.  

The present review updates the synthetic approaches which are used for derivatization of macrocycles such 

as crown ethers (1), their open-chain analogues, i.e. podands (2), calixarenes (3) and resorcinarenes (4) by 

azaheterocycles presented in the literature since 1993. 
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1. SYNTHESIS AND BINDING PROPERTIES OF HETARYL-CONTAINING CROWN 

ETHERS 

Crown ethers are of great interest due to their high ability to bind spherical substrates such as metal cations 

or halide ions.5,6 The basic principle of this interaction is accordance of cavity size with “guest” radius.1,2 

The synthesis of ligands with arrangement of binding centers other than that in the crown ethers provides 

additional possibility.  Thus, ligands having pyridine type nitrogen atom in addition to polyether ring, 

significantly offered for selective extraction of Ag+
 cation in the presence of K+, Ba2+, Pb2+.7-11 Introduction 

of oligopyridyl-fragments in the crown ethers makes it possible to firmly bind Ru3+ cation.12 Quinazoline 

derivative appended diaza-18-crown-6 selectively responds to Cd2+ over other tested metal ions via a large 

increase in fluorescence.13
 For recognition of Cu2+

 cations in the presence of Pb2+, K+, Zn2+, Cd2+ the design 

of receptor molecules containing redox active 1,2,4-thiadiazole-based fluoroionophores is a promising 

approach.14 Heterocycle-containing crown ethers with chiral centers are able to recognize enantiomers of 

ammonium salts.15,16
 The bis(terpyridyl) bridging ligands containing aza-crown macrocyclic spacer groups 

have recently been in particular interest for preparation of di- and trinuclear complexes.17,18 Moreover, the 

binding of metal ions affects luminescent properties of obtained compound. Thus, e.g., the stable 

complexes of Re+
 and Ru3+

 have higher fluorescence as compared with free ligands.21 The flexible spacer in 

the molecule allows intramolecularly transfer photoinducted power between metal cation and heterocyclic 

moiety it as occurs in Ru3+ and Os3+ complexes of polypyridyl-containing crown ethers. Such compounds 

can be applied as luminescent and electrochemical sensors and to produce novel polymeric films.19,20,21  

Crown ethers containing photochromic heterocycles (e.g. spirobenzopyrans or thiopyrans) are used for 



 

photoswitch extraction, molecular electronic and transfer through membrane and creation of optical 

systems. The properties of these compounds have been detailed in the review.61 The possibility of control 

of photochemical properties using complexation is illustrated in Scheme 1. Thus, photoisomerism of 

spirane (5) is made difficult in the presence of K+ cation suitable for the cavity size (Scheme 1). The 

increase of length of spacer connecting heterocyclic and crown ether fragments makes it possible to form 

coordination bond between metal cation and phenolate oxygen atom, and to stabilize merocyanine form of 

spirocompound (2) (Scheme 2). 
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One cannot but note another useful property of crown ethers, i.e. their high ability to penetrate through 
biological membrane. Coupling of the lipophilic crown ethers with molecules incorporated into medicinal 
agents (e.g., indole, benzimidazole, phenothiazine, isoquinoline, pyridine, pyrimidine and triazine 
derivatives23) facilitates the delivery of substance into the cell.  
Most of hetaryl-substituted crown ethers described in literature are azacrown ether derivatives. The 
syntheses of macrocycles containing heterocycle as a sub-cyclic unit, crown ether and benzocrown ether 
derivatives are rare. The present section focuses mainly on synthetic approaches to the above macrocycles. 



 

1.1. PREPARATION OF CROWN ETHERS CONTAINING AZAHETEROCYCLES AS 

SUB-CYCLIC UNIT 

A common method for preparation of crown ethers having heterocycle as a sub-cyclic unit is template 

synthesis based on the nucleophilic substitution reaction. Thus, cyclization of heterocycles containing 

good leaving groups with binucleophiles gives the pyridyl-,16,24-30 s-triazinyl-,31,32 isoquinolyl- and 

pyrazolylcrown ethers (Scheme 3).33  
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Additional functional groups in the polyether fragment make it possible to graft other substituents (Scheme 

4, Scheme 5).28  
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Crown ether annelated heterocycles were obtained by the reaction of ditosilate(halogen) polyethers with 

heterocycles containing two nucleophilic groups (Scheme 6).15,34-39  
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Enantiomeric recognition of amino acids 15,16,39,42 has focused on the interaction of chiral ammonium salts 

with optically pure crown ethers, prepared as shown in the Scheme 7.15,16,27,30,39-41  
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1.2. AZACROWN ETHER DERIVATIVES 

Most of described methods for functionalization of azacrown ethers are nucleophilic substitution at 

sp3-hybridized carbon atom. The secondary amino group plays the part of nucleophile and gives access to 

compounds in which macrocyclic and heterocyclic fragments are bound by flexible spacers of different 

length. The main advantage of this approach is high yield of target products (Scheme 8, Table 1). 
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Table 1 Reaction conditions and yields of compounds 9 a-u                                             

No ArX (8 a-u) n Reaction conditions (9 a-u), % Ref. 

a N

S
Cl

 

1, 2 8 Kbar, (C2H5)3N, THF, 100 0C, 4-5 

days 

51-94 9 

b N

X

Cl

X= a) S, b) O  

1, 2 8 Kbar, (C2H5)3N, THF, 100 0C, 4 days a) 74-100 

b) 64-95 

9 

c 

N

NH
Br

 

2 СH3CN, 82 0C, 16 h 57 43 

d N

N
H

Cl

 

2 СH3CN, 82 0C 60 44 

e N
N

N

OH  

2 i-C3H7OH, 50 0C,  0.5 - 1 h 91 45 

f 

NH

Br

 

2 Na2CO3, KI, CH3CN, ∆ 40 46 

g 

N
N SCl

O

S
H3C

 

2 NaBH(OAc)3 43 44 

h 

N

S
S

Cl

 

2 NaBH(OAc)3 39 44 



 

No ArX (8 a-u) n Reaction conditions (9 a-u), % Ref. 

i N
NPh

HO O
Cl

CH3

 

2 (C2H5)3N, C2H5OH, ∆, 12 h 51 47 

j N
X

Y

Z  
a) X = Cl; Y = H; Z = NO2, CF3
b) X = Br; Y = H, CH2OCH2OCH3,
    Py, pyrazinyl; Z = H
c) X = Br; Y = H, Py; Z = H

a)1,2 

b) 2 

c) 1,2 

a) 8 Kbar, (C2H5)3N, THF, 100 0C, 3-5 

days 

b) C2H5OH, 70 0C, 1-2 h 

c) 8Kbar, (C2H5)3N, THF, 100 0C, 4 

days 

a) 77-95 

b) 63-94 

c) 51-93 

9 

10 

48 

k 
N

X

Y

Z

a) X = Br; Y = OMe, OH; Z =Cl
b) X = Br, Y = NO2; Z = H

 

2 a) Na2CO3, CH3CN, 80 0C 

 

b) (C2H5)3N, benzene, ∆ 

a) 58-82 

 

b) 90 

28 

 

49 

l 
N

OH

Cl

Br

 

2 Na2CO3, CH3CN, 80 0C 63-90 28 

13 

m 
N

Y

Z

X

a) X = H, OH; Y =  OH;
    Z =Cl, NO2, H, Me
b) X = CHO, 
    Y = OH, NH-Boc, NH2;
    Z =  H  

2 a) (CH2O)n, toluene 

 

b) NaBH(OAc)3, DCE 

a) 24-85 

 

b) 75-85 

 

 

50 

 

49 

n 

N

N
Cl

 

1, 2 8 Kbar, (C2H5)3N, THF, 100 0C, 3-4 

days 

82-90 9 

o N
N

Cl

Cl  

1, 2 8 Kbar, (C2H5)3N, THF, 100 0C, 3-4 

days 

80-81 9 

p N

Cl  

1, 2 8 Kbar, (C2H5)3N, THF, 100 0C, 3-4 

days 

90-93 9 

q 
HN

N
H

O

O
Cl

 

2 NaBH(OAc)3 80 44 



 

No ArX (8 a-u) n Reaction conditions (9 a-u), % Ref. 

 

r 

N
H

NN

N

Cl

R3
R1

R1 = H, Cl
R3 = H, CH3, CH2Ph  

2 C2H5OH, 8 Kbar, 160 0C 41-69 51 

52 

 

s 

N

Br  

 N(C2H5)3, THF 52 53 

t 

N

Br

N N  

2 N2, 190 0C, 20 h 47 54 

u 

N

N

N

Br

 

2 1) NC2H5(i-C3H7)2, C2H5OH, ∆, 1.5 h 

 

2) C2H5OH, ∆, 24 h 

60 

 

50 

17, 

 

54, 55

 

The products similar to 9 were obtained starting from the monoazacrown ethers10,14,48,54 and diazathiocrown 

ethers.10 Sometimes generation of a leaving group occurs in situ. For example, reductive amination of 

monoaza-15-crown-4 by 4-pyridine- or quinolinecarbaldehyde in the presence of sodium borohydride 

triacetate results in the pyridyne- and quinoline-substituted azacrown ethers (Scheme 9).11,49,50  In this case 

hydroxy group of methylol derivative of heterocycle formed by reduction of formyl function is displaced by 

action of azacrown ether. 
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Nucleophilic properties of azacrown ether were used for the synthesis of ligands containing photochromic 

heterocycles.56-59  

As a rule the preparation of these compounds is multistage process. The reaction with heterocyle was 

proceeded by introduction of functional substituent containing carbonyl (Scheme 10). Formyl group is 

involved in the condensation affording the formation of photochromic ligands (Scheme 10, Scheme 11).62  
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In rare cases the azacrown derivatives take part in the reaction with azaheterocycles as an electrophilic 

component. Thus synthesis of dipyrazolyldiazacrown ethers demonstrates that hetaryl-containing azacrown 

ethers can be obtained by the reaction of substitution of nucleophuge contained in the crown.50 (Scheme 12) 
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Azacrown ethers directly linked with heterocycle can be prepared by heterocycle transformation initiated 

by nucleophilic attack. For example, thiadiazole-containing azacrown ethers (10) were obtained by 

Boulton-Katritzky rearrangement.56 (Scheme 13) 
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In this case the action of nucleophile leads to the ring opening followed recyclization accompanied by 

elimination of benzonitrile. 

 

1.3. CROWN ETHER DERIVATIVES 

Since the main method for functionalization of crown ethers similar to that for azaanlogues is the 

nucleophilic substitution of good leaving groups such as halogen, alcoxy, amino etc., the preliminary 

modification of crown ethers is required for preparing nucleofuge-containing crown ethers. Such 

functionalization is possible in homolytical displacement of methylene fragment adjacent to oxygen atom. 

For instance, the addition of radical obtained from the crown ether in the presence of organic peroxide to the 

double bond of 3-chloropropene results in 3-chloropropylcrown ether (Scheme 14).63  
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Homolytical hydroxylation of crown ethers makes it possible to introduce nucleophilic function into the 

crown which will be used for further interaction with heterocycle.  The reaction of hydroxy-substituted 



 

crown ethers 7 with chloro-derivatives of pyrazole affords product (12) in which heterocyclic and 

macrocyclic moieties are bound by a flexible spacer (Scheme 15).47  

An interest example of heterocycle building has been described in the papers.64-66 Crown-containing 

isonicotinate (13) reacts with 2-amino-3-chloro-5,6-dicyanopyrazine to give pyridinium salt (11) with 

further intramolecular cyclization including reaction of nucleophilic substitution of hydrogen (SN
H-process) 

at unsubstituted carbon atom of activated pyridine, which results in the formation of 

pyrido[1’,2’:1,2]imidazo[4,5-b]pyrazine-containing crown ether (15) (Scheme 16).  
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Direct C-C bond formation seems undoubtedly promising. The only case of immediate coupling of crown 

ether with heterocycles is homolytical hetarylation by 2-substituted quinolines and quinoxaline (Minisci 

procedure). The reaction of nucleophilic radical initiated at the first stage with NH-salts of quinoline and 

quinoxaline results in the formation of aromatic products in which heterocyclic and crown ether fragments 

are linked by C-C bond (Scheme 17).67,68 

One-stage grafting of crown ethers to copolymer of vinylpyridine with styrole is based on the method of 

homolytic hetarylation (Scheme 18).69 Crown ether-containing polymers substantially simplify phase 

transfer catalysis while showing reactivity compared with that of active catalysts of low temperature 

processes.  



 

The traditional method for template synthesis of macrocycles with the participation of heteryl-containing 

synthons is also suitable for preparing heterocycle-containing crown ethers. Thus, condensation of 

hydroxyalkyl derivative of heterocycles with polyethylene glycol ditosylates is a convenient one-stage 

method for combination of heterocyclic and crown ether fragments in a molecule.51,70 Using this approach 

makes it possible to form macrocyclic analogues of natural nucleosides such as crown-containing purines 

(16) and (17) in which crown moiety can be bound both with azine and azole fragments (Scheme 19).  
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1.4. BENZOCROWN ETHER DERIVATIVES 

Benzoannelated crown ethers are subjected to electrophilic substitution reactions typical for aromatic 

compounds (nitration, halogenation, acylation). The products obtained in the SE(Ar) reactions are 

convenient starting materials for successive building heterocyclic substituent on the crown ether die. Now 

such approach is the main method. Thus, reduction of nitrobenzocrown ethers (18) results in amino 

derivatives (19) which can participate in the reaction of nucleophilic substitution as nucleophiles (Scheme 

20, 21, 22).71-74  
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The introduction of the second amino group into aromatic ring of benzocrown ether allows synthesize their 

derivatives annelated by benzodiazepine and benzimidazole rings (20) and (21), respectively (Scheme 

23).71  
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Crownlinked porphirines (22) can be obtained from tetraaminodibenzocrown ether in a similar way 

(Scheme 24).75  
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Iodobenzocrown ethers readily take part in Heck reaction. Intramolecular cyclization of acetylene 

derivatives prepared using this approach affords indoloannelated crown ethers (23) (Scheme 25).76  
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Cross-coupling of ethynylbenzocrown ethers with bipyridiles can be related to this type of the reactions 

(Scheme 26).77  
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Introduction of carbonyl group in the aromatic ring opens wide possibility for building heteryl-containing 

benzoannelated crown ethers. Thus, e.g., oxidation of 4-acetylbenzocrown ether affords the formation of 

important building block (25), based on which different heterocycles can be obtained (Scheme 27).78  
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Scheme 27 

Product (26) might be achieved by nucleophilic substitution in pyrazine ring and reductive decyanation.79,80  

4-Acetylbenzoannelated crown ethers (24) easily react with azoloannelated 1,2,4-triazines and 

3-substituted  1,2,4-triazin-5(2H)-ones. It has been shown that at the room temperature the interaction of 

azolotriazines with 4-acetylbenzo-12-crown-4 in the presence of equimolar amount of potassium 

tert-butoxide results in the extremely smooth oxidative SN
H-reaction (Scheme 28).81  
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4-Acetylbenzocrown ethers react with 3-R-1,2,4-traizin-5(2H)-ones in the similar manner, being formed 

within one stage SN
H-products (27) (Scheme 29).81  

 

O

O

O

O

HN

N

N

OR
HN

N

N

OR
OH

O

O

O

O

BF3*(C2H5)2O
CH3OH

CH3

O 27

R = Ph, 4-CH3C6H4, 4-Cl-C6H4, 2-Py  
Scheme 29 

 

Introduction of COCl group in the aromatic ring of benzocrown ether makes it possible to form the products 

(28) with crown ether fragment by the nucleophilic substitution reaction at one stage (Scheme 30).73,82  

Formyl group also opens the wide ways to synthesize chromogenic styryl derivatives of crown ethers by the 

condensation reaction. Using this method a number of structures containing benzothiazole substituent such 

as styrylbenzthiazoles (30),62 fullerene-containing compounds (29)83 and fluorescent ligands (31)84 were 

synthesized (Scheme 31).  

It is interesting to note that crown ether fragment in these compounds affects photochromic properties of 

heterocycle by complexation. In the presence of Mg2+ ions crown-containing styryl dyes give 

supramolecular dimers with cross-arrangement of molecules.85 When dimer solutions are photoirradiated 

the [2+2] cycloaddition proceeds resulting in the only one from 11 possible isomers (Scheme 32). 
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Scheme 32 

The reactions of aromatic nuclei in benzocrown ethers are also used for heterocycle annelation. 

Isoquinolinylcrown ethers (34) were obtained from the crown ethers (33) via the stage of forming 

crown-2-benzopyryllium salts (Scheme 33).86  
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The interaction of 4,5-(3,6,9-thioxaundecandiyldioxy)-1,3-diiminoindoline with 3,5-diamino-1-dodecyl- 

1,2,4-triazole in ether results in the triazolehemiporphirazine-containing two crown ether fragments (39). 

Such compounds can be used for building ionic channels by Langmuire-Blodgett method (Scheme 35).88  
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A novel original method for direct C-C coupling of benzocrown ethers with heterocycles has been worked 

out using 1,2,4-triazine and 1,3-diazines. In the reactions demonstrated in Schemes 36-38 benzoannelated 

crown ethers were considered as O,O-disubstituted polyphenoles for which reactions with various azines 

have been studied earlier.89,90 Such direct C-C coupling can stop at the addition step (compounds (44, 45)) 



 

or be completed by formation of compounds (43), i.e. products of nucleophilic aromatic substitution of 

hydrogen (SN
H –products) which are more stable to protolytical cleavage (Scheme 36).91,92  
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Scheme 36 

The use of reaction of nucleophilic addition to unsubstituted carbon atom in azines93,94 makes it possible 

to carry out of the interaction of benzoannelated crown ethers with 1,3-diazines in the presence of 

trifluoroacetic acid results in products (44) of nucleophilic addition to unsubstituted C(4)-carbon atom of 

azine system (Scheme 37).95  
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The interaction of 1,2,4-traizin-5-ones with benzoannelated crown ethers in the presence of organic 

anhydrides affords products (45) of direct nucleophilic addition to unsubstituted carbon atom of traizine 

ring (Scheme 38).96  
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Scheme 38 

2. MODIFICATION OF OPEN-CHAIN ANALOGUES OF CROWN ETHERS – PODANDS BY 

AZAHETEROCYCLES 

Heteryl-containing podands are of great interest as fluorescent sensors, molecular switchers and 

compounds for molecular recognition.97  



 

The main way for preparing these compounds is the reaction of nucleophilic substitution of good leaving 

groups both in podand and heterocycle. When heterocycles interact with podands containing nucleofuges 

the reaction species can be either exocyclic nitrogen atom (Scheme 39)97-102  or nucleophilic substituent in 

the heterocycle (Scheme 40). 103-106 
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Scheme 40 

Depending on the number of good leaving groups in the parent compounds the products containing 

heterocyclic and polyether fragments in 1:1 or 1:2 ratio were obtained. 



 

There are some literature examples of the synthesis of heteryl-containing podands by substitution of a good 

leaving group in heterocycle. Quinoxaline-containing podands (47) and (48) with moderate yields were 

prepared by the reaction of 2,3-dichloroquinoxaline (46) with sodium salt of polyether (Scheme 41).107  
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The presence of two nucleophuges in the pyrazole ring promotes the appearance of two polyether moieties 

in the molecule (Scheme 42).108 Obtained podand (49) extracts dopamine selectively. 
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The treatment of 5-cyano-1,2,4-triazines with polyethers leads to the substitution of cyanogroup (Scheme 

43).109  
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Besides amino and hydroxy groups the terminal aromatic substituents of podands can play a role of a 

nucleophilic component. Ability of azines to addition of aromatic C-nucleophiles was used for the synthesis 

of heteryl-containing podands (50, 51, 52, 53) (Schemes 44, 45, 46).95, 110, 111  
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Scheme 46 

Heterocyclization and rearrangements reactions caused by nucleophilic attack of polyethers or 

thiopolyethers are separative group of reactions. Scheme 47 shows building the fragments of antitumor 

agent “mitolozomide” on the base of polyether chain. This structural modification of the agent results in 

improving its membranotropic properties.112  
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Scheme 47 

The appearance of podand chain in the heterocycle affects complexation ability of the molecule. The 

interaction of thiadiazole (55) with di(methylamino)polyether affords compound (56) which are able to 

extract metal cations in the order: Cu2+>>Pb2+>K+>Ni2+>>Cd2+ (Scheme 48).56  
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Pyrimidine-containing podands (58) forms by the reaction of 6-methyl-1,3-oxazine-2,4(3H)-dione (57) 

with dibromo polyether. The reaction is accompanied by oxazine ring opening and pyrimidine ring 

closing (Scheme 49).113  
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Podands having aromatic fragments are modified by the electrophilic substitution reactions, which 

increases functionalization degree of molecule.  

Using multicomponent reactions makes it possible to obtain heteryl-containing podands in one stage. Thus 

Mannich reaction is a good route to the heterylpolyethylenepolyamines (Scheme 50).114  
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Three-component Biginelly reaction allows preparation of dihydropyrimidine-containing podands (59) and 

(60) (Scheme 51).115  
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3. HETARYLATION OF CALIXARENES 

Calixarenes, compounds of interesting shape, useful in supramolecular chemistry as a platform for creation 

of pre-organized receptors may be laterally substituted, functionalized at lower and upper rims, or bridging 

fragments of parent macrocycles. Of special interest is the introduction of heterocyclic moieties into 

calixarenes. In this case the additional complexation center for synthesis of selective ditopic receptors is 

appeared in the molecule. Functionalization by pyridyl and oligopyridyl fragments may be interesting to 

design ligands capable of selective binding and extraction of the Ag+,116,117 Cs+,118 Eu3+ and Tb3+,119 Ru3+ 

and Rn+.120-123 

 

3.1. LOWER RIM MODIFICATION 

There are two approaches for hetarylation of calixarene lower rim: nucleophilic substitution of good 

leaving groups in heterocycle (SN
ipsoAr) and heterocyclization of open-chain substituents in the lower rim. 

The former method is more commonly used. 

The reaction of bromo- and chloroheterocycles with calixarenes in the presence of a base in aprotonic 

solvent results in the products of partial or exhaustive hetarylation of hydroxy groups. The hetarylation 

degree depends on both substituents in the lower rim and the reaction conditions. (Scheme 52, Table 2) 

Such reaction affords the formation one or more conformers. Thus, it is very important to find reaction 

condition to prepare compounds with fix conformation. 
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Table 2. Reaction conditions and yields of 58 a-f 

No R n HetX  61 a-f Reaction conditions 62 a-f % Ref. 

a  4 

N N

R R

R`
Br

 

    

 t-C4H9  R=H, R’=CH3 a) α,α’-isomer,  

   NaH/DMF 
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  K2CO3/CH3CN 

  NaH/DMF 

 

1,3- O-Het 

 

1,3- O-Het 
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 K2CO3/ CH3CN, ∆ 
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N BrX

Y

 

    

 t-C4H9 3 X = Br, Y=H α-isomer; NaH  

          K2CO3 

1,2,3-O-Het 80 

95 
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Y=α-CH2OH 

α -isomer, NaH 1,3-O-Het 68 116 
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 NaH/CH3CN 

      Cs2CO3/DMF
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No R n HetX  61 a-f Reaction conditions 62 a-f % Ref. 
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1-O-Het 35 132 
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N Br

 
NaH / DMF 1,3-O-Het 40 131 

 

Hetarylation of lower rim of thiacalix[4]arene (63) is carried out in the similar way (Scheme 53).133  
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Scheme 53 

The reactions of dihalogensubstituted azines with calixarenes afford the formation of bridging structures on 
the base of calix[4]arene134

 and calix[6]arene129,135,136 or binding two calixarenes by heterocyclic fragments 
(Schemes 54, 55).125,137-139 
In the literature there is an example of heterylation of lower rim by the reaction of nucleophilic substitution 
of leaving group in calixarene (Scheme 56).140 
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Another way for hetarylation of lower rim of calixarene die is aminolysis of acyl chlorides. The target 

products were created both by the interaction of aminocalixarene derivatives with chloroanhydrides of 

heterocycle-containing acyl chlorides (Scheme 57, Table 3) and by the reaction of aminosubstituted 

heterocycles with calixarenes having acyl chloride group (Scheme 58, Table 4).  
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Table 3. Reaction conditions and yields of 65 a-c 

No HetCOCl R n % Conditions Ref. 
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Table 4. Reaction conditions and yields of 67 a-d 

No HetNH2 R` R n % Conditions Ref. 

a 
N

NH2  

Cl t-C4H9 4 60 N(C2H5)3, 

CH2Cl2 
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b 
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N
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OHO  N
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t-C4H9 4 45 HCl / 

(i-C3H7)2NC2H5 

CH2Cl2 
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N
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OEt H 4 91 CH2Cl2, 

N(C2H5)3, rt,  

30 h 

145 

 

As a rule the third method of hetarylation of lower rim is a multistep procedure consisting in consecutive 

cyclization of open-chain structures. Hydrazine derivatives of 4-tert-butylcalix[4]arenes (69) were 

prepared by successive conversion of methoxycarbonylmethyl derivatives (68) into amides when treated by 

hydrazine hydrate.146 The subsequent condensation of such compounds with different 1,3-diketones leads 

to the formation of pyrazole-containing calixarenes (70).147 (Scheme 59) 
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3.2. UPPER RIM MODIFICATION 

Compounds extracting I and II groups metal cations and bind anions and rare-earth metal cations due to 

complexation centers divided in the space are formed by modification of upper rim of calixarene.  

Hetarylation of upper rim is topical for the design of a new generation of lowtoxical biologically active 

compounds. Namely calixarene platform fixes the sterical location of heterocyclic receptors and promotes 

more selective binding the active centers of biological target.4 

In most cases modification of upper rim of calixarene die is a multistage process requiring preliminary 

functionalization of aromatic rings. 

The studies concerned with this problem divide into three groups: 

• Synthesis of hetaryl-containing calixarenes by modification of amino derivatives of calixarenes 

obtained by the conversion of compounds available in electrophilic substitution reaction (nitration, 

halogenation, sulphurizing)   

• Hetarylation of calixarenes having formyl-group at the upper rim 

• Direct coupling of unsubstituted calixarenes and heterocycles 

Introduction of amino group into aromatic ring is well-known synthetic route, so most of works presented 

in the literature are devoted to this method. As a rule amino derivatives of calixarenes are formed by 

nitration of aromatic ring followed by reduction of nitro-group.120, 121, 148, 149 Amino-substituted calixarenes 

readily react with hetaryl-containing carboxylic acids.120,149 The interaction of aminocalixarenes (71) with 

2,2’-dipyridyl derivatives acyl chlorides results in product (72) in which two calixarenes are bound by 

heterocyclic fragment (Scheme 60).121,148  
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Calixarenes (73) and (74) having one heterocyclic moiety are prepared by the reaction with pyrimidines:148 
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Varying the number of functional substituents at the upper rim allows to obtaining products (75) and (76) 

with two and more heterocyclic fragments (Scheme 62, Scheme 63).123  
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Due to easy diazotizing of amino-groups it is possible to carry out azo-coupling of aminocalixarene (77) 

with thiazole.150 
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Calixarene directly bound with heterocyclic substituent is obtained due to susceptibility of five-member 

thiazoles to rearrangement by the action of N-nucleophiles. For example, the reaction of aminocalixarene 

(77) with 1,2,3-thiadiazolyl-4-carbaldehyde results in the formation of imines followed by easy Cornfort 

rearrangement into 1,2,3-triazole-containing calixarene (79) (Scheme 65).151  

As mentioned above, the use of formyl function in calixarene also promote to build heterocyclic 

substituents at the upper rim. 

Thus, condensation of 1,3-diformylcalixarene (80) with 2-aminothiophenol leads to the calixarene 

modified by benzothiazole (81) (Scheme 66).152  
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Wittig reaction is the successful method for preparation of pyridine-containing calixarenes (82).153   
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Compounds (83) and (84) were obtained by the reaction of calixarenes (80) having formyl group with 

2-methylimidazole (Schemes 68, 69). Their complexes with Zn2+ and Cu2+ cations can be considered as 

synthetic models of enzymes.154,155 
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Mannich reaction is the efficient route to hetarylation of upper rim of calixarene die (Scheme 70).156,157  
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Unsubstituted calixarenes exhibit nucleophilic properties not only in Mannich reaction but also in the 

interaction with π-deficient heterocycles. Using methodology of direct C-C coupling of azaheterocycles 

with aromatic C-nucleophiles92 a products of exhaustive hetarylation of upper rim of calixarene die by the 

reaction with 1,2,4-traizines (85) and quinazoline (86) were obtained (Scheme 71).95   
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It has been found that the reaction of calixarenes with 3-substituted 1,2,4-triazin-5-ones results in the 

products (87) and (88) in the fixed conformation (Scheme 72).95  
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Addition of organic anhydrides into reaction mixture is necessary to activate of 1,2,4-traizinones and form 

stable products. If the reaction is carried out of the reaction in the presence of acetic anhydride the acylation 

of lower rim of calixarene promotes conformerization into 1,3-alternate.158 The same effect has been 

observed in the presence of trifluoroacetic anhydride. However in the latter case the dezacylation of 

hydroxy-groups proceeds and product in cone conformation was isolated. 

4. SYNTHESIS OF RESORCINARENES MODIFIED BY AZAHETEROCYCLES 

Resorcinearenes and cavitands are of special interest in the diversity of molecular receptors. To our 

knowledge calixresorcinarenes are one of ligands having permanent conformation (cone) and fixed size of 

the cavity. Most of different complexation centers allows binding a great number of cations and anions. The 

presence of several reaction centers in the molecule allows its modification both at upper and middle rim. 

Contrary to calixarene modification there are only a few examples describing the functionalization of 

resorcinearenes and cavitands by heterocyclic fragments. Such resorcinarene derivatives can be easily 

modified at hydroxyl groups, which results in the increase of comlexation cavity volume. So, the main 

method for functionalization of resorcinarenes is the alkylation reaction, in which hydroxy-groups act as a 

nucleophile. The interaction of resorcinarene (89) with eight equivalents of 6-bromomethyl-6’-methyl- 

2,2’-dipyridyl gives the product (90) of exhaust O-alkylation of upper rim of resorcinarene die (Scheme 

73).159  
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Halide atoms in 1,2-dinitro-4,5-difluorobenzene can by easily displaced by hydroxy-groups of 89. 

Treatment of 90 with 1,2-diketones results in the appearance of heterocyclic units in the molecule to give 

compounds (91) and (92) (Scheme 74).160,161  

Similar transformations can be used for grafting calixarenes to porphyrines.162 

Two examples of upper rim hetarylation of aromatic rings of resorcinarene are known. Treatment of 

bromomethyl derivative of resorcinarene by pyridine affords the quaternization and formation of charged 

structure (93) (Scheme 75).163  
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Direct C-C coupling resorcinarenes with heterocycles has been carried out using the above mentioned 

AN-methodology.93,94 One-stage coupling of resorcinarene with 1,2,4-triazin-5-ones, based on the reaction 

of direct nucleophilic addition to unsubstituted carbon atom of azine, leads to formation of product (94) 

having one triazinone ring (Scheme 76).164  
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There are a number of examples of hetarylation of resorcinarene bridging substituents. The presence of 

bridging fragment with terminal double bond into resorcinarene or cavitand molecule allows introducting 

nucleophilic by acylation hydroxy-group. In such compounds the first to react are hydroxy-groups of 

bridging substituents (Scheme 77).163  
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The introduction of heterocyclic fragments into the resorcinarenes and cavitands gives a good possibility to 

increase the water solubility of these compounds.163 The appearance of novel complexation centers in the 

molecule makes for selective extraction of  Со2+ 156, Ni2+ and Pd2+.163 



 

CONCLUSION 

Synthesis of macrocycles with heterocyclic substituents forms the basis of creating compounds having 

unique properties. The main synthetic approaches to these compounds are the reactions of nucleophilic 

substitution of halogen at sp3- and sp2-carbon atoms both in macrocycles and heterocyclic compounds, and 

consecutive building a heterocycle on the macrocyclic die. The limitation of the described methods is the 

need of preliminary modification of subtrates and that such reactions are multistage processes. At present 

the direct building of C-C bond between heterocycle and macrocycle is not common. It is described in the 

papers dealing with homolytical hetarylation of crown ethers (Minisci procedure), and direct coupling of 

unsubstituted macrocyclic system with different azine derivatives using AN и SN
H-methodology. 
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