$[2\pi + 2\sigma]$ TYPE CYCLOADDITION REACTIONS OF NAPHTHO[*b*]-CYCLOPROPENE WITH TRITHIOCARBONYL COMPOUNDS TO FORM 1,3-DIHYDRONAPHTHO[2,3-*c*]THIOPHENE DERIVATIVES

Katsuhiro Saito,* Yasuhiro Ohzone, Yoji Kondo, Katsuhiko Ono, and Masakazu Ohkita

Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

<u>Abstract</u> – Reactions of naphtho[*b*]cyclopropene with trithiocarbonyl derivatives in chloroform afforded 1,3-dihydrobenzo[2,3-*c*]thiophene derivatives in moderate yields through a $[2\pi + 2\sigma]$ type cycloaddition process. The similar reaction with a dithiocarbonate compound gave a recovery of the starting material. A reaction with thiotropone resulted in a $[8\pi + 2\sigma]$ type adduct in 5% yield. Solvent effects on the product yields revealed that the reactions proceeded *via* ionic intermediates.

Naphtho[*b*]cyclopropene (1) is a stable colorless crystalline material in spite of its large strain energy resulted from the distorted bond angles of the bridge-head sp² hybridized carbon atoms. However, it is known that compound 1 is highly reactive as a 2π component in cycloaddition reactions owing to the strained structure and a deficient aromaticity.¹ Recently, the carbonic behavior of 1 was also proposed.² The reactivities of cyclopropene derivatives attached to aromatic rings such as benzocyclopropene,³ 5*H*-cycloprop[*f*]isobenzofuran,⁴ or 1 have been researched. Recently, $[4\pi + 2\sigma]$ and $[8\pi + 2\sigma]$ types cycloadduct were obtained in reactions of 1 with nitrones and tropones, respectively.⁵

As a series of our research, reactions of 1 with trithiocarbonyl compounds were performed to give 1,3dihydronaphtho[2,3-*c*]thiophene derivatives. We report here the results of the reactions.

Compound (1) and an equimolar amount of dimethyltrithiocarbonate (2) in chloroform were refluxed for 3 days. The reaction mixture was separated with column chromatography on silica gel to give a

cycloaddition product (**3**) in 21% yield. The analogous reactions of compound (**1**) with 1,3-dithiol-2thione (**4**) afforded **5** in moderate yields (**5a**: 43%, **5b**: 55%, **5c**: 66%, and **5d**: 63%). The structures of the products were deduced on the basis of their spectral properties. The molecular structures were ultimately determined by an X-ray structural analysis of **5b** as shown in Fig. 1.

As a π -electron system similar to 4, thiotropone (6)⁸ was also reacted with 1 to afford a $[8\pi + 2\sigma]$ type cycloaddition product (7) in low yield (5%).

The reactions of $\mathbf{1}$ with $\mathbf{4b}$ in several solvents were examined. The yields of $\mathbf{5b}$ in the reactions and the solvent parameters⁷ are summarized in the following table. The cycloaddition reaction did not proceed in benzene.

Solvent	Time (days)	Yield (%)	Relative Permitivity	Swain's Parameter
chloroform	2	43	4.81	1.15
tetrahydrofuran	3	32	7.58	0.84
ethyl acetate	3	21	6.02	0.79
benzene	3	0	2.28	0.73

Table. Reactions of 1 with 4b in solvents and the solvent parameters

The table shows that the polarity of the solvents increases the product yields. The electron densities on the carbon atoms of 1 are known to be high at the bridgehead carbon atoms as shown in Figure 2.⁵

Figure 2. Electron densities of naphtho[*b*]cyclopropene (1).

These facts indicate that the reaction of 1 with 2 or 4 proceed through an ionic process as follows. An anionic carbon atom of 1 nucleophilicly attacks to the trithiocarbonyl carbon atom (2, 4) to generate a zwittter ionic intermediate (8), which then cyclized to the final product (3, 5).

The reaction of 1 with thiotropone (6) may proceed *via* a reaction path similar to those of 2 and 4. Thus the initial product is supposed to be spiro-type intermediate (9), which subsequently isomerizes to the final product (7).⁵

EXPERIMENTAL

NMR, MS, and IR spectra were measured with Varian GEMINI 200/300, Hitachi 220A, and JASCO FT/IR-5300 spectrometers, respectively. On the separation of reaction mixture, Wakogel[®] C-200 (100–200 mesh; 75–150 μm) was used.

Typical reactions are mentioned below.

Reaction of 1 with 2. A mixture of 1 (140 mg, 1 mmol) and 2 (138 mg, 1 mmol) in chloroform (15 mL) was refluxed for 3 days. The solvent was removed in vacuo. The resulted residue was separated with column chromatography on silica gel (eluent: 30 vol% benzene in *n*-hexane) to give 3 (88 mg, 21%).

3: ¹H NMR (CDCl₃) δ : 2.18 (s, 6H, Me), 4.37 (s, 2H, -CH₂-), 7.45-7.58 (m, 2H), 7.71 (s, 1H), 7.79-7.90 (m, 2H), 8.43 (s, 1H). ¹³C NMR (CDCl₃) δ : 12.3, 30.6, 74.3 126.3, 127.4, 128.5, 132.4, 133.4, 137.3, 140.1. IR (KBr): 3056, 2913, 1659 cm⁻¹. MS *m*/*z* (rel. intensity): 278 (M⁺, 100), 248, 184, 140.

Reaction of 1 with 4. A mixture of 1 (140 mg, 1 mmol) and 4a-d (1 mmol) in chloroform (15 mL) was refluxed for 3 days. The solvent was removed in vacuo. The resulted residue was separated with column chromatography on silica gel (eluent: 30 vol% benzene in *n*-hexane) to gave **5**.

5a: ¹H NMR (CDCl₃) δ : 4.47 (s, 2H, -CH₂-), 6.13 (s, 2H, CH), 7.45-7.55 (m, 2H), 7.72 (s, 1H), 7.78-7.95 (m, 2H), 8.42 (s, 1H). ¹³C NMR (CDCl₃) δ : 37.2, 86.0, 123.1, 123.2, 126.2, 126.3, 127.3, 128.7, 128.9, 132.7, 133.5, 135.6, 140.1. IR (KBr): 3057, 1522 cm⁻¹. MS *m/z* (rel. intensity): 274 (M⁺, 100), 184, 139.

5b: ¹H NMR (CDCl₃) δ: 2.46 (s, 6H, Me), 4.46 (s, 2H, -CH₂-), 7.49-7.51 (m, 2H), 7.71 (s, 1H), 7.79-7.90 (m, 2H), 8.40 (s, 1H). ¹³C NMR (CDCl₃) δ: 19.4, 36.6, 83.2, 123.4, 124.2, 125.3, 126.4, 126.9, 127.1, 128.5, 132.4, 133.4, 137.3, 140.0. IR (KBr): 3052, 2912 cm⁻¹. MS *m/z* (rel. intensity): 366 (M⁺, 96), 231, 184.0, 150. A crystal data: colorless plate, C₁₆H₁₄S₅, *M* = 366.59, triclinic, space group *P*Ī(#2), *a* = 7.2598(8)Å, *b* = 7.791(1) Å, *c* = 16.714(4) Å, *α* = 80.07(4)°, *β* = 79.43(3)°, *γ* = 63.44(3)°, *V* = 826.8(3) Å³, *Z* = 2, *D*_{calcd} = 1.472 g cm⁻³, μ(MoKα) = 6.90 cm⁻¹, *F*₀₀₀ = 380. A total of 3610 reflections for $2\theta_{\text{max}} = 55.0^{\circ}$ was collected with $I > 2\sigma(I)$ using a Rigaku / MSC Mercury CCD diffractometer (MoK α radiation, $\lambda = 0.71070$ Å) at 296 K. The structure was solved using direct method (SIR97) and refined by full-matrix least-squares analysis giving values of R = 0.109, $R_{\rm w} = 0.173$, $R_1 = 0.075$, S = 1.48, $\Delta \rho_{\rm max} / \Delta \rho_{\rm min} = 0.51 / -0.48$ e Å⁻³.

5c: ¹H NMR (CDCl₃) δ : 4.54 (s, 2H, -CH₂-), 7.46 (t, *J* = 7.4 Hz, 4H), 7.53 (dd, *J* = 6.2, 3.2 Hz, 2H), 7.60 (tt, *J* = 1.4, 7.4 Hz, 2H), 7.73 (s, 1H), 7.82 (dd, *J* = 5.9, 3.2 Hz, 1H), 7.97 (dd, *J* = 7.1, 1.4 Hz, 4H), 8.03 (dd, *J* = 5.8, 3.6 Hz, 1H), 8.86 (s, 1H). ¹³C NMR (CDCl₃, 300 MHz) δ : 37.2, 86.3, 122.8, 123.1, 123.2, 126.2, 126.3, 126.3, 127.2, 127.4, 127.8, 128.8, 132.7, 133.5, 134.2, 135.6, 136.6, 140.9, 187.2. IR (KBr): 3400, 3055, 1684 cm⁻¹. MS *m/z* (rel. intensity): 546 (M⁺, 1), 216, 184, 139.

5d: ¹H NMR (CDCl₃) δ: 3.30–3.43 (m, 4H, –CH₂–), 4.46 (s, 2H, –CH₂–), 7.46–7.55 (m, 2H), 7.71 (s, 1H), 7.78–7.83 (m, 1H), 7.86–7.91 (m, 1H), and 8.40 (s, 1H). ¹³C NMR (CDCl₃) δ: 26.0, 30.7, 36.5, 111.7, 123.3, 123.5, 124.8, 126.3, 127.1, 128.4, 132.2, 133.4, 137.7, 113.8. IR (KBr): 3056, 1530 cm⁻¹. MS *m/z* (rel. intensity): 365 (M⁺, 100), 224, 139.

Reaction of **1** *with* **6**. A mixture of **1** (281 mg, 2 mmol), P_2S_5 (3.80 g, 17 mmol), and tropone (1.00 g, 9.5 mmol) in dichloromethane (7 mL) was treated with NEt₃ (1.07 g, 10 mmol) at 0 °C under a nitrogen stream. The mixture was stirred for 1 h, then filtrated in the reduced pressure and then the solvent was removed on a rotary evaporator. The resulted residue was separated with column chromatography on silica gel (eluent: 40 vol% benzene in *n*-hexane) to give **7** (28 mg, 5.4%).

7: ¹H NMR (CDCl₃) δ : 3.15 (d, J = 6.0 Hz, 1H), 3.94 (d, J = 14.3 Hz, 1H, $-CH_{2}-$), 4.10 (d, J = 14.3 Hz, 1H, $-CH_{2}-$), 5.28 (dd, J = 9.1, 6.3 Hz, 1H), 6.34 (d, J = 9.1 Hz, 1H), 6.53 (t, J = 3.2 Hz, 1H), 6.72 (t, J = 3.2 Hz, 2H), 7.48–7.52 (m, 2H), 7.72 (s, 1H), 7.76–7.86 (m, 4H). ¹³C NMR (CDCl₃) δ : 34.1, 44.5, 122.3, 124.5, 125.0, 125.4, 125.8, 126.0, 127.0, 127.1, 127.2, 127.3, 128.5, 129.7, 130.3, 131.8, 132.9, 136.7. IR (KBr): 3002, 1578, 1501, 914, 874, 758, 721 cm⁻¹. MS *m/z* (rel. intensity): 262 (M⁺, 100), 261, 229, 228, 185.

REFERENCES

- B. Halton and M. C. Banwell, "Cyclopropenes" in "The Chemistry of Functional Groups" ed. by Z. Rappoport, Wiley, Chichester, 1978, pp. 1223–1340; B. Halton, *Chem. Rev.*, 1989, **89**, 1161; P. C. Hiberty, G. Ohanessian, and F. Delbecq, *J. Am. Chem. Soc.*, 1985, **107**, 3095; C. Wentrup, C. Mayor, J. Becker, and H. J. Linder, *Tetrahedron*, 1985, **41**, 1601.
- 2. W. Pan, M. Jones, Jr., B. East, and P. Lahti, Tetrahedron Lett., 1998, 39, 1505.

- K. Saito, H. Ishihara, and S. Kagabu, *Bull. Chem. Soc. Jpn.*, 1987, **60**, 4141; S. Sagabu and K. Saito, *Tetrahedron Lett.*, 1988, **29**, 675; S. Kagabu and T. Inoue, *Chem. Lett.*, 1989, 2181; B. Halton, and S. G. Russell, *Aust. J. Chem.*, 1990, **43**, 2099; S. Kagabu, K. Saito, H. Watanabe, K. Takahashi, and K. Wada, *Bull. Chem. Soc. Jpn.*, 1991, **64**, 106; K. Saito, K. Ito, K. Takahashi, and S. Kagabu, *Org. Prep. Proc. Internat.*, 1991, **23**, 196; K. Ito and K. Saito, *Recent Res. Devel. Pure & Applied Chem.*, 2000, **4**, 81.
- 4. I. J. Anthony and D. Wege, Tetrahedron Lett., 1987, 28, 4217.
- S. Ando, J. Imamura, A. Hattori, M. Tajitsu, and K. Saito, *Heterocycles*, 1998, 48, 1769; K. Saito, S. Ando, and Y. Kondo, *ibid.*, 2000, 53, 2601; K. Saito, K. Ono, N. Ito, N. Tada, and S. Ando, *ibid.*, 2002, 57, 235.
- 6. K. Saito, K. Ito, C. Kabuto, and K. Takahashi, Bull. Chem. Soc. Jpn., 1991, 64, 2387.
- 7. C. G. Swain, R. B. Moseley, and D. E. Bown, J. Am. Chem. Soc., 1955, 77, 3721.
- T. Machiguchi, T. Hasegawa, H. Otani, and S. Yamabe, J. Am. Chem. Soc., 1994, 116, 407; K. Ito,
 K. Saito, S. Takeuchi, and K. Takahashi, *Heterocycles*, 1992, 34, 1415.