SOLID-PHASE SYNTHESIS OF CYCLIC GLYCOPEPTIDES RELATED TO MANNOPEPTIMYCIN DERIVATIVES

Ting-Zhong Wang,a* Karen L. Wheless,b Alan G. Sutherland,^b and Russell G. Dushin^b

a *Chemical Development,* ^b *Medicinal Chemistry, Chemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965, USA. E-mail: Wangt@wyeth.com*

Abstract – The mannopeptimycins comprise a novel series of glycopeptide antibiotics that display activity against susceptible and resistant forms of gram-positive bacteria. Low isolated yields of these products from fermentation make the synthesis of easily accessible analogs attractive. A simplified hexapeptide is synthesized using a combination of solid-phase and solution-phase techniques.

Naturally occurring and semisynthetic mannopeptimycins comprise a novel class of glycopeptide antibiotics that display activities against both susceptible and resistant forms of gram-positive bacteria.^{1~3} The key structural feature is a cyclic hexapeptide core that contains alternating D- and L-amino acids and includes an epimeric pair of a previously unknown amino acid, β-hydroxyenduricididine. One of these

novel residues contains a mannopyranose moiety in the α-configuration while a D-tyrosine residue contains an α -linked mannose disaccharide. In the natural series, isovalerate substitution occurs on the terminal mannose of this disaccharide, and this substitution conveys substantial increases in antibacterial potency over the non-derivatized parent molecule.² Similarly, those semisynthetic variants that display potent antibacterial activities are derivatized on the same terminal mannose.³ Notably, replacements of the β-methylphenylalanine residue with phenylalanine or cyclohexylalanine are tolerated, and derivatives lacking the *N*-linked mannose or the hydroxyl substituents on the β-hydroxyenduricididine side chains also retain good levels of antibacterial activities. Among the more potent and most easily accessed semisynthetic derivatives are adamantyl ketals (1-4) (Figure 1).³ The apparent tolerability of structural variation on these three residues provided impetus to prepare simplified derivatives in which the β-hydroxyenduricididine residues are replaced with arginines. Herein we report results on the total synthesis of a representative compound.

Retrosynthetically, we envisioned that target compound (**5**) could be derived from an appropriately protected linear glycopeptide (**6**) which could be assembled using solid-phase techniques (Figure 2). We anticipated that cyclization to provide the hexapeptide core would be most readily accomplished with amide bond formation between the L-serine and unhindered glycine residues. Five of the six requisite amino acids are commercially available, while the D-tyrosine containing a mannose disaccharide would be prepared synthetically.

Synthesis of the disaccharide started with the known pentenyl- α -D-mannopyranoside (7)⁴ which was selectively protected with benzoyl chloride to give pentenyl-2,3,6-tri-*O*-benzoyl-α-D-mannopyranoside (**8**) retaining a hydroxy substituent on the 4-position open for glycosylation⁵ (Scheme 1). Dimannoside (10) was obtained in modest yield by silver(I) triflate-promoted coupling of **8** with 1-α-chlorotetraacetylmannose (**9**).6 Prior to glycosylation, the commercially available *N*-Fmoc-tyrosine

(**11**) was reacted with pentafluorophenyl trifluoroacetate (PFPTFA) to give pentafluorophenyl ester (**12**) which is suitably protected for glycosylation and activated for amide bond formation during peptide synthesis.7 Coupling of the dimannoside (**10**) with **12** was mediated by *N*-iodosuccinimide/trimethylsilyl triflate and gave the glycosylated tyrosine derivative (13) required for peptide synthesis.⁴ The stereochemistry of both α -anomeric centers was assigned based on literature precedents^{4,6} and was confirmed by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy.⁸

For solid-phase synthesis, we employed a 2-chlorotrityl chloride resin with HBTU/HOBt coupling protocols and Fmoc protection. The synthesis commenced with attachment of *O*-*tert*-butyl-*N*-Fmoc-serine to the resin. The loading of the resin was determined to be in the range of ~0.5 mmol/g by UV quantification of the Fmoc-piperidine adduct.⁹ The linear peptide chain was then assembled on the resin

in a sequential fashion using standard procedures **(**Scheme 2**)**. Peptide coupling reactions were monitored for completion by negative Kaiser ninhydrin test. Once peptide elongation was accomplished, the protected linear hexapeptide (**6**) was released from the resin by cleavage with a mixture of acetic acid, trifluoroethanol and dichloromethane (1:1:8). The cyclization of **6** was effected by using BOP/DIPEA as the dehydrating reagent in a mixed solvent system of DMF/CH_2Cl_2 (1:1). The cyclic peptide was thereby obtained cleanly with almost complete suppression of dimerization when the concentration of the substrate was held at $<$ 10⁻² M. Deprotection was accomplished sequentially by treatment with TFA/MeOH to remove the *tert*-butyl and the 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) groups, and then with K2CO3/MeOH for hydrolysis of the acetates and benzoates. The fully deprotected glycopeptide was converted to the final target (**5**) by transketalization with admantanone dimethyl ketal (Scheme 3). The selectivity at 4,6-position of the terminal mannose is in accordance to those observed for natural mannopeptimycins with the formation of only a small amount of the corresponding 2,3-ketal isomer. To our surprise, the synthetic glycopeptide (**5**) was found to have very poor activity against a diverse panel of bacteria. The disparity of activities between this fully synthetic analog and the semisynthetic derivatives (**1-4**) demonstrates that the cyclic guanidines on the β-hydroxyenduricidine residues play a very important role in conveying antibacterial activities of the mannopeptimycin derivatives.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of Magid Abou-Gharbia, Tarek Mansour, and Janis Upeslacis. Xidong Feng, Kaiko Tabei, Murthy Damarla, Rachel Garlish, Mark Tischler and Joseph Ashcroft are acknowledged for providing separations and analytical support.

REFERENCES AND NOTES

1. S. E. De Voe and M. P. Kunstmann, "Antibiotic AC98 and Production Thereof." US Patent 3,495,004, Feb. 10, 1970 (*Chem. Abstr.*, 1970, **72**, 223).

- 2. H. He, R. T. Williamson, B. Shen, E. I. Graziani, H. Y. Yang, S. M. Sakya, P. J. Petersen, and G. T. Carter, *J. Am. Chem. Soc*., 2002, **124**, 9729.
- 3. P. E. Sum, D. How, N. Torres, P. J. Petersen, E. B. Lenoy, W. J. Weiss, and T. S. Mansour, *Bioorg. Med. Chem. Lett*., 2003, **13**, 1151; P. E. Sum, D. How, N. Torres, H. Newman, P. J. Petersen, and T. S. Mansour, *Bioorg. Med. Chem. Lett*., in press; P. E. Sum, D. How, N. Torres, P. J. Petersen, J. Ashcroft, E. I. Graziani, F. E. Koehn, and T. S. Mansour, *Bioorg. Med. Chem. Lett*., in press; H. He, B. Shen, P. J. Petersen, W. J. Weiss, H. Y. Yang, T. Z. Wang, R. G. Dushin, and G. T. Carter, *Bioorg. Med. Chem. Lett.* (submitted); T. Z. Wang and R. G. Dushin, unpublished results.
- 4. D. R. Mootoo, P. Konradsson, and B. Fraser-Reid, *J. Am. Chem. Soc.*, 1989, **111**, 8540.
- 5. J. M. Williams and A. C. Richardson, *Tetrahedron*, 1967, **23**, 1369.
- 6. S. Akhtar, A. Routledge, R. Patel, and J. M. Gardiner, *Tetrahedron Lett.*, 1995, **36**, 7333.
- 7. K. J. Jensen, M. Meldal, and K. Bock, *J. Chem. Soc., Perkin Trans. I*, 1993, 2119.
- 8. For compound (10): at both anomeric centers, ${}^{1}J_{CH} = 172$ Hz, a good indication of α-configurations.
- 9. J. Green and K. Bradley, *Tetrahedron*, 1993, **49**, 4141.