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Abstract – A facile synthetic method for two components of hapalosin, that is, b-
hydroxy-g-amino acid and b-hydroxy acid, has been established by utilizing chiral
building blocks efficiently resolved in a lipase-catalyzed transesterification.
Furthermore, the synthesis of hapalosin through macrolactamization of the seco
acid derived from these two components and (S)-2-hydroxy-3-methylbutyric acid
has thus been demonstrated.

A 12-membered cyclic depsipeptide hapalosin (1), isolated by Moore and co-workers, has shown
remarkable reversing activity against P-glycoprotein-mediated multidrug resistance (MDR) of cancer
cells.1 Due to the important biological activity and the unique structural features, many research groups
have pursued syntheses of 1 and its analogues.2-11 Most of them reasonably adopted the
macrolactamization of seco acid (2) which consists of three components, that is, b-silyloxy-g-amino acid
(3), b-hydroxy ester (4), and a-hydroxy ester (5) as depicted in Scheme 1.
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The compound (3) was prepared in several ways, some of which started from stereodefined compounds
such as L-phenylalanine,2-6 L-serine,7 or the chiral epoxides accessible by the Sharpless’ protocols.12,13

Others depend on asymmetric reactions using the chiral auxiliaries such as Williams’ oxazine14 and
Evans’ oxazolidinone.15 On the other hand, 4 was elaborated by means of either the Cram-selective
addition of Grignard reagent to (R)-2-phenylpropanal7 or the asymmetric reactions involving Evans-type



syn-aldol protocol3-5,8 and Brown’s allylboration of 1-octanal.2 These preparative methods for 3 and 4,
however, require careful handling of moisture-sensitive reagents under low temperatures and/or
manipulation of easily racemizing compounds. In the light of the important biological activity of 1, a
more intensive structure-activity relationship (SAR) study would be indispensable for further biological
information. Thus, it is highly desired to develop a more flexible and concise approach to a wide range of
diastereomers, enantiomers, and congeners of 3, 4 and 5 leading to a variety of analogues of 1.
The reasonable retrosynthetic analysis of 1 is illustrated in Scheme 1, in which compounds (6) and (7)
seem to be the superb precursors for 3 and 4, respectively, because 3 can be synthesized through
hydroboration/oxidation and 4 through cross-metathesis/hydrogenation. In our efforts to expand the
usefulness of lipase-catalyzed kinetic resolutions, we have recently disclosed that methyl 2-substituted 3-
hydroxy-4-pentenoates16 and 4-amino-1-alken-3-ols17 can efficiently be resolved by use of CAL-B
(Candida antarctica, fraction B), which seemingly allows access to 6 and 7 with high optical purity
together with all the possible stereoisomers. In the event, racemic amino alcohols (8),18, 19 (9),18, 19 racemic
b-hydroxy esters (11),20, 21 and (12)20, 21 were efficiently resolved with high enantiomeric purity as outlined
in Schemes 2 and 3.
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Encouraged by these successful results, we then examined the transformation of 6 and 7 into 3 and 4,
respectively. As shown in Scheme 4, compound (6) was transformed into silyl ether (14) through alkaline-
hydrolysis followed by silyl protection and N-methylation. Hydroboration of 14 followed by TEMPO-
mediated oxidation22 gave rise to 3 uneventfully, whose 1H and 13C NMR spectra and [a]D were in good
accordance with those in the literature.4b
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On the other hand, compound (4) was prepared by the procedure depicted in Scheme 5. The initially
attempted cross-metathesis of 7 with 1-heptene (3 eq.) resulted in poor yield (20-40%) even at the
refluxing temperature of dichloromethane in the presence of 5 mol% of cata;yst (15).23 However, the
reaction with catalyst (16)24 smoothly afforded b-hydroxy ester (17) even at room temperature.
Hydrogenation of 17 followed by alkaline-hydrolysis gave a carboxylic acid which was alkylatively
esterified to afford 4 (95%ee),25 whose 1H and 13C NMR spectra were identical to those in the literature.4b

This procedure implies the high synthetic potential of 7 leading to a wide range of stereodefined b-
hydroxy esters with high enantiomeric purity in place of Evans’ asymmetric aldol protocol.
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With components (3) and (4) in hand, the stage was set for macrolactamization. As depicted in Scheme 6,
1 was synthesized through the slightly modified procedure of the Nishiyama’s protocol.4 Condensation of
3 with 4 followed by reductive cleavage of the benzyl ester afforded carboxylic acid (18), which was
condensed with 526 to give fully-protected seco acid (19). Sequential treatment with TABF, H2/Pd(OH)2,
and TFA gave seco acid (2) as a trifluoroacetic acid salt. Finally, the macrolactamization of 2 was
accomplished by means of DPPA27 in DMF under high dilution condition to afford 1 in 32% yield, whose
1H and 13C NMR spectra and [a]D were fully identical to those reported.1, 2, 4, 7, 8
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In summary, we have achieved an efficient synthesis of hapalosin utilizing chiral building blocks obtained
by lipase-catalyzed kinetic resolutions of methyl 2-substituted 3-hydroxy-4-pentenoates and 4-amino-1-
alken-3-ols. We believe that our strategy constitutes an advantageous route to various congeners of
hapalosin required for SAR studies, which will be reported in due course.
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