HETEROCYCLES, Vol. 62, 2004, pp. 185 - 190 Received, 28th July, 2003, Accepted, 29th August, Published online, 14th October, 2003

A STEREOCONTROLLED SYNTHESIS OF HAPALOSIN

Tetsuta Oshitari, Saiyinbilige, and Tadakatsu Mandai*

Department of Chemistry and Bioscience, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima, Kurashiki 712-8505, Japan Fax: +81(86)4401062; E-mail: ted@chem.kusa.ac.jp

<u>Abstract</u> – A facile synthetic method for two components of hapalosin, that is, β -hydroxy- γ -amino acid and β -hydroxy acid, has been established by utilizing chiral building blocks efficiently resolved in a lipase-catalyzed transesterification. Furthermore, the synthesis of hapalosin through macrolactamization of the seco acid derived from these two components and (*S*)-2-hydroxy-3-methylbutyric acid has thus been demonstrated.

A 12-membered cyclic depsipeptide hapalosin (1), isolated by Moore and co-workers, has shown remarkable reversing activity against P-glycoprotein-mediated multidrug resistance (MDR) of cancer cells.¹ Due to the important biological activity and the unique structural features, many research groups have pursued syntheses of 1 and its analogues.²⁻¹¹ Most of them reasonably adopted the macrolactamization of seco acid (2) which consists of three components, that is, β -silyloxy- γ -amino acid (3), β -hydroxy ester (4), and α -hydroxy ester (5) as depicted in Scheme 1.

Scheme 1

The compound (3) was prepared in several ways, some of which started from stereodefined compounds such as L-phenylalanine,²⁻⁶ L-serine,⁷ or the chiral epoxides accessible by the Sharpless' protocols.^{12,13} Others depend on asymmetric reactions using the chiral auxiliaries such as Williams' oxazine¹⁴ and Evans' oxazolidinone.¹⁵ On the other hand, **4** was elaborated by means of either the Cram-selective addition of Grignard reagent to (*R*)-2-phenylpropanal⁷ or the asymmetric reactions involving Evans-type

syn-aldol protocol^{3-5,8} and Brown's allylboration of 1-octanal.² These preparative methods for **3** and **4**, however, require careful handling of moisture-sensitive reagents under low temperatures and/or manipulation of easily racemizing compounds. In the light of the important biological activity of **1**, a more intensive structure-activity relationship (SAR) study would be indispensable for further biological information. Thus, it is highly desired to develop a more flexible and concise approach to a wide range of diastereomers, enantiomers, and congeners of **3**, **4** and **5** leading to a variety of analogues of **1**.

The reasonable retrosynthetic analysis of **1** is illustrated in Scheme 1, in which compounds (**6**) and (**7**) seem to be the superb precursors for **3** and **4**, respectively, because **3** can be synthesized through hydroboration/oxidation and **4** through cross-metathesis/hydrogenation. In our efforts to expand the usefulness of lipase-catalyzed kinetic resolutions, we have recently disclosed that methyl 2-substituted 3-hydroxy-4-pentenoates¹⁶ and 4-amino-1-alken-3-ols¹⁷ can efficiently be resolved by use of CAL-B (*Candida antarctica*, fraction B), which seemingly allows access to **6** and **7** with high optical purity together with all the possible stereoisomers. In the event, racemic amino alcohols (**8**),^{18, 19} (**9**),^{18, 19} racemic β -hydroxy esters (**11**),^{20, 21} and (**12**)^{20, 21} were efficiently resolved with high enantiomeric purity as outlined in Schemes 2 and 3.

Scheme 2

Encouraged by these successful results, we then examined the transformation of **6** and **7** into **3** and **4**, respectively. As shown in Scheme 4, compound (**6**) was transformed into silyl ether (**14**) through alkaline-hydrolysis followed by silyl protection and *N*-methylation. Hydroboration of **14** followed by TEMPO-mediated oxidation²² gave rise to **3** uneventfully, whose ¹H and ¹³C NMR spectra and $[\alpha]_D$ were in good accordance with those in the literature.^{4b}

Scheme 4

(a) 1 M NaOH/MeOH, rt, 1 h, 98%; (b) TBSCl/imidazole/DMF, rt, 10 h, 97%;
(c) NaH/MeI/DMF, rt, 12 h, 98%; (d) 9-BBN/THF, rt, 12 h; NaOOH, 50 °C, 3 h, 82%;
(e) cat. TEMPO/cat. NaOCl/NaClO₂/MeCN/pH 6.8 phosphate buffer, rt, 4.5 h, 66%.

On the other hand, compound (4) was prepared by the procedure depicted in Scheme 5. The initially attempted cross-metathesis of 7 with 1-heptene (3 eq.) resulted in poor yield (20-40%) even at the refluxing temperature of dichloromethane in the presence of 5 mol% of cata;yst (15).²³ However, the reaction with catalyst (16)²⁴ smoothly afforded β -hydroxy ester (17) even at room temperature. Hydrogenation of 17 followed by alkaline-hydrolysis gave a carboxylic acid which was alkylatively esterified to afford 4 (95%ee),²⁵ whose ¹H and ¹³C NMR spectra were identical to those in the literature.^{4b} This procedure implies the high synthetic potential of 7 leading to a wide range of stereodefined β -hydroxy esters with high enantiomeric purity in place of Evans' asymmetric aldol protocol.

Scheme 5

(a) $K_2CO_3/MeOH$, rt, 1 h, 85 %; (b) **16** (5 mol%)/1-heptene (3 eq.)/CH₂Cl₂, rt, 12 h, 71%; (c) H₂ (1 atm)/10%Pd-C /EtOH, 2 h, 82%; (d) 1 M NaOH/MeOH, rt, 5 h; (e) Cs₂CO₃/BnBt/DMF, rt, 12 h, 86% in two steps.

With components (3) and (4) in hand, the stage was set for macrolactamization. As depicted in Scheme 6, **1** was synthesized through the slightly modified procedure of the Nishiyama's protocol.⁴ Condensation of **3** with **4** followed by reductive cleavage of the benzyl ester afforded carboxylic acid (18), which was condensed with 5^{26} to give fully-protected seco acid (19). Sequential treatment with TABF, H₂/Pd(OH)₂, and TFA gave seco acid (2) as a trifluoroacetic acid salt. Finally, the macrolactamization of **2** was accomplished by means of DPPA²⁷ in DMF under high dilution condition to afford **1** in 32% yield, whose ¹H and ¹³C NMR spectra and [α]_D were fully identical to those reported.^{1,2,4,7,8}

Scheme 6

(a) EDCI/DMAP/CH₂Cl₂, 40 °C, 8 h, 89% (b) H₂ (1 atm)/cat. Pd(OH)₂/EtOH, rt, 1 h; (c) **5**/EDCI/DMAP/CH₂Cl₂, rt, 12 h, 97%; (d) TBAF/THF, rt, 1.5 h, 77%; (e) TFA (10 eq.) /CH₂Cl₂, rt, 2 h, 90%; (f) DPPA (2 eq.)/*i*-Pr₂NEt (6 eq.)/DMF (1 mM soln of **2**), rt, 72 h, 32%.

In summary, we have achieved an efficient synthesis of hapalosin utilizing chiral building blocks obtained by lipase-catalyzed kinetic resolutions of methyl 2-substituted 3-hydroxy-4-pentenoates and 4-amino-1alken-3-ols. We believe that our strategy constitutes an advantageous route to various congeners of hapalosin required for SAR studies, which will be reported in due course.

ACKNOWLEDGMENTS

We thank Toyo Kasei Kogyo Co. Ltd. for a generous gift of DPPA.

REFERENCES AND NOTES

- 1. K. Stratmann, D. L. Burgoyne, R. E. Moore, G. M. L. Patterson, and C. D. Smith, J. Org. Chem., 1994, **59**, 7219.
- 2. (a) T. Q. Dinh and R. W. Armstrong, J. Org. Chem., 1995, 60, 8118.
 (b) T. Q. Dinh, X. Du, and R. W. Armstrong, J. Org. Chem., 1996, 61, 6606.
- 3. A. K. Ghosh, W. Liu, Y. Xu, and Z. Chen, *Angew. Chem.*, *Int. Ed. Engl.*, 1996, **35**, 74; *Angew. Chem.*, 1996, **108**, 73.
- 4. (a) K. Ohmori, T. Okuno, S. Nishiyama, and S. Yamamura, *Tetrahedron Lett.*, 1996, 37, 3467.
 (b) T. Okuno, K. Ohmori, S. Nishiyama, S. Yamamura, K. Nakamura, K. N. Houk, and K. Okamoto, *Tetrahedron*, 1996, 52, 14723.
- 5. B. Wagner, R. Beugelmans, and J. Zhu, *Tetrahedron Lett.*, 1996, 37, 6557.

- 6. C. E. O'Connell, K. A. Salvato, Z. Meng, B. A. Littlefield, and C. E. Schwartz, *Bioorg. Med. Chem. Lett.*, 1999, **9**, 1541.
- 7. M. Haddad, C. Botuha, and M. Larchevêque, Synlett, 1999, 1118.
- 8. C. Hermann, G. C. G. Pais, A. Geyer, A. M. Kühnert, and M. E. Maier, *Tetrahedron*, 2000, 56, 8461.
- 9. T. Q. Dinh, X. Du, C. D. Smith, and R. W. Armstrong, J. Org. Chem., 1997, 62, 6773.
- N. Kashihara, S. To-e, K. Nakamura, K. Umezawa, S. Yamamura, and S. Nishiyama, *Bioorg. Med. Chem. Lett.*, 2000, 10, 101.
- 11. For a review, see: S. Nishiyama, J. Syn. Org. Chem., Japan, 2001, 59, 938.
- 12. M. Catasús, A. Moyano, M. A. Pericás, and A. Riera, Tetrahedron Lett., 1999, 40, 9309.
- 13. M. E. Maier and C. Hermann, *Tetrahedron*, 2000, 56, 557.
- 14. Y. Aoyagi and R. M. Williams, *Tetrahedron*, 1998, **54**, 10419.
- 15. G. C. G. Pais and M. E. Maier, J. Org. Chem., 1999, 64, 4551.
- 16. T. Mandai, T. Oshitari, and M. Susowake, Synlett, 2002, 1665.
- 17. T. Mandai and T. Oshitari, submitted for publication.
- 18. Prepared as follows.

For the ring opening with Cs₂CO₃/MeOH, see: T. Ishizuka and T. Kunieda, *Tetrahedron Lett.*, 1987, **28**, 4185.

- 19. The typical procedure is as follows. A mixture of (\pm) -8 (3.17 g, 11.4 mmol), 2-propenyl acetate (3.78 mL, 34.2 mmol), and CAL-B [1.14 g, 0.1 g per 1 mmol of (\pm) -8] in toluene (34 mL) was stirred at rt for 72 h. The lipase was filtered off and the filtrate was concentrated to give solids which were chromatographed (SiO₂) to afford acetate (6) (1.78 g, 49%) and alcohol (3*S*)-(8) (1.45 g, 46%). Treatment of 6 with K₂CO₃/MeOH (rt, 40 min) gave rise to alcohol (3*R*)-(8) in a quantitative yield. The %ee of (3*R*)-8 and (3*S*)-8 was determined by HPLC using Chiralcel OD-H (hexane/2-propanol=20/1, 230 nm). The reaction of (\pm)-9 was performed in an almost similar manner. Compound 10 was converted to alcohol (3*R*)-(9) by the treatment with K₂CO₃/MeOH (rt, 40 min). The %ee of (3*R*)-9 and (3*S*)-9 was determined by HPLC using Chiralcel OD-H (hexane/2-propanol=50/1, 254 nm) after conversion to benzoates.
- 20. Prepared by the aldol condensation of methyl propionate with acrolein (LDA/THF, -78 °C). The aldols thus obtained revealed to be a *ca*. 1:1 mixture of diastereomers, which were isolated by

medium-pressure column chromatography (SiO₂, hexane/EtOAc=6/1-4/1).

- 21. The typical procedure is as follows. A mixture of (±)-11 (4.89 g, 31.8 mmol), 2-propenyl acetate (7.01 mL, 63.6 mmol), and CAL-B [3.18 g, 0.1 g per 1 mmol of (±)-11] in toluene (48 mL) was stirred at rt for 60 h. The lipase was filtered off and the filtrate was concentrated to give an oil which was chromatographed (SiO₂) to afford acetate (7) (2.50 g, 42%) and alcohol (3S)-(11) (2.05 g, 45%). The compound (7) was treated with K₂CO₃/MeOH (rt, 40 min) to give (3R)-11 in quantitative yield. The %ee of (3R)-11 and (3S)-11 was determined by HPLC using Chiralcel OD-H (hexane/2-propanol=20/1, 230 nm). The reaction of (±) 12 was performed in an almost similar manner. The %ee of (3R)-12 and (3S)-12 was determined by HPLC using Chiralcel OD-H (hexane/2-propanol=20/1, 230 nm).
- 22. M. Zhao, J. Li, E. Mano, Z. Song, D. M. Tschaen, E. J. J. Grabowski, and P. J. Reider, *J. Org. Chem.*, 1999, **64**, 2564.
- 23. P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
- 24. (a) M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, *Org. Lett.* 1999, 1, 953. (b) J. P. Morgan and R. H. Grubbs, *Org. Lett.*, 2000, 2, 3153.
- 25. Determined by HPLC using Chiralcel OD-H (hexane/2-propanol=9/1, 0.8 mL/min, 220 nm). 4: $t_{\rm R}$ =6.60 min, the enantiomer of 4: $t_{\rm R}$ =5.85 min.
- Commercially available from Aldrich. For the preparation, see: (a) K. Mori, *Tetrahedron*, 1976, 32, 1101. (b) P. Koch, Y. Nakatani, B. Luu, and G. Ourisson, *Bull. Soc. Chim. Fr.*, 1983, 11, II-189. (c) W.-R. Li, W. R. Ewing, B. D. Harris, and M. M. Joullié, *J. Am. Chem. Soc.*, 1990, 112, 7659.
- 27. T. Shioiri, K. Ninomiya, and S. Yamada, J. Am. Chem. Soc., 1972, 94, 6203.