HETEROCYCLES, Vol. 62, 2004, pp. 121 - 125 Received, 3rd March, 2003, Accepted, 22nd April, 2003, Published online, 28th April, 2003

REGIOSELECTIVITY OF INTRAMOLECULAR NITRILE OXIDE–ALLENE CYCLOADDITIONS

David G. J. Young* and Dongxiang Zeng

Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN 37996 USA

Abstract–Studies on the intramolecular nitrile oxide–allene cycloaddition are reported. The reaction shows a preference for reaction of the more remote π –bond.

Previously, we reported an intramolecular nitrile oxide–allene cycloaddition route to triacylmethanes.¹ It was suggested that potential formation of a strained bridgehead double bond contributed to the regioselectivity as only **2** was produced in the event (Scheme 1). ² It was decided to study the cycloaddition in another setting because many instances would not involve a bridgehead olefin as in $1\rightarrow 3$ ³. We report here that the regioselection is turned over in two fused bicyclic systems.

Scheme 1

As shown in Scheme 2, 3,3-dimethylpropargyl chloride reacted with dibutyl cuprate to afford allene (**4)** (55%) ⁴. The allene was deprotonated with LDA and quenched with dimethylacetamide which yielded the methyl ketone (**5)** in 53% yield. ⁵ The anion derived from **5** underwent Michael addition to nitroethylene

to yield 68% of **6.** Dehydration of **6** using phenyl isocyanate generated the nitrile oxide (**7)** *in situ*, which led to the production of isoxazoline (**8)** in the absence of the regioisomer (75%). 6,7

Other reaction conditions did not alter the regioselectivity. For example, treatment of 6 with Boc₂O and 4-DMAP produced **8** in 48% yield, and generation of the silyl nitronate produced **9** in 43% yield (Scheme 3). Under no circumstances did the α , β double bond react.

To see if electronic factors were playing a role in the selectivity, the oxidation state of the ketone was adjusted. Condensation of the anion of **5** with 3-nitropropanal gave **10,** Luche reduction of which afforded diol (**11**) (49% for two steps). ⁸ Double silylation of **11** afforded bis–TMS protected **12** in 90% yield, and treatment of **12** with phenyl isocyanate was found to produce **13** in the absence of **14** (45%). 7,9

Scheme 4

The results can be rationalized through a chairlike transition state in which the n-butyl group is pseudoaxial, (i.e. A, in Figure 1). In A, the nitrile oxide approaches the π bond in the same plane as the allene methyls whereas B involves approach of the oxygen in an orthogonal plane. If one assumes that the axial alkyl group raises the energy of the chair, transition state B is lower in energy which would lead to products like **8**, **9** and **13**.

These results stand in contrast to the nitrone allene cycloaddition of terminal allenes in which it has been shown that the internal π -bond of the allene is more reactive.¹⁰ In 15, for example, it is an H atom as opposed to an n–butyl group which would be processed through the chairlike transition state in an axial position.

Scheme 5

In conclusion, the INOC (intramolecular nitrile oxide cycloaddition) reaction is subject to regioselectivity control when a bulky group is present in the α -position of the allene.¹¹

ACKNOWLEDGMENT

This work was funded by the University of Tennessee, Knoxville start up funds. The author thanks Dr. David Baker and Dr. Karen Terry Welch for helpful discussion on regioselection.

REFERENCES AND NOTES

- 1. D. G. J. Young and D. Zeng, *J. Org. Chem.,* 2002, **67**, 3134.
- 2. P. Warner, *Chem. Rev.,* 1989, **89**, 1067.
- 3. J. Bredt, H. Thouet, and J. Schmitz, *Liebigs Ann. Chem.,* 1924, **437**, 1.
- 4. F. Delbecq and J. Gore, *Angew. Chem*., 1976, **88**, 537.
- 5. J. C. Clinet and G. Linstrumelle, *Nouv. J. Chim*., 1977, 373.
- 6. T. Mukaiyama and T*.* Hoshino, *J. Am. Chem. Soc*., 1960, **82**, 5339.
- 7. For *intermolecular* allene nitrile oxide cycloadditions, see: a. L. Bruche, M. L. Gelmi, and G. Zecchi, *J. Org. Chem.,* 1985, **50**, 3206; b. G*.* Zecchi, *J. Org. Chem.,* 1979*,* **44**, 2796.
- 8. H. Griesser, R. Öhrlein, W. Schwab, R. Ehrler, and V. Jäger, *Org. Synth.*, 1999, **77**, 236; J. L. Luche, *J. Am. Chem. Soc.*, 1978, **100**, 2226.
- 9. E. J. Corey and B. B. Snider, *J. Am. Chem. Soc*., 1972, **94**, 2549.
- 10. N. A. LeBel and E. G. Banucci, *J. Am. Chem. Soc.,* 1970, **92**, 5278.
- 11. Data for new compounds prepared: **6**, ¹H NMR (CDCl₃) δ 4.42 (t, *J*=6.6 Hz, 2H), 2.71 (t, *J*=6.9 Hz, 2H), 2.26 (q, *J*=6.8 Hz, 2H), 2.15 (t, *J*=7.1 Hz, 2H), 1.82 (s, 6H), 1.25–1.35 (m, 4H),

0.87–0.93 (m, 3H); ¹³C NMR (CDCl₃) δ 209.53, 200.10, 107.21, 100.56, 74.87, 34.94, 30.08, 26.36, 22.25, 19.57 (2C), 13.89; HRMS (EI) calcd for C₁₃H₂₁NO₃ m/z 239.1521, found m/z 239.1516; **8**, ¹H NMR (CDCl₃) δ 2.95, (t, *J*=7.4 Hz, 2H), 2.61 (t, J=7.4 Hz, 2H), 2.29, (m, 2H), 1.55 (s, 6H), 1.34–1.37 (m, 4H), 0.89 (t, *J*=6.7 Hz, 3H); ¹³C NMR (CDCl₃) δ 198.69, 156.60, 152.35, 134.83, 85.91, 35.28, 32.19, 25.39 (2C), 25.30, 23.10, 19.97, 13.74; HRMS (EI) calcd for C₁₃H₁₉NO₂ *m/z* 221.1416; found *m/z* 221.1420; **9**, ¹H NMR (CDCl₃) δ 4.22 (m, 1H), 2.85 (td, *J*=15.8, 9.8 Hz, 1H), 2.12–2.28 (m, 3H), 1.80 (s, 3H), 1.73 (s, 3H), 1.54–1.59 (m, 2H), 1.25–1.42 (m, 4H), 0.92 (t, J=6.8 Hz, 3H); ¹³C NMR (CDCl₃) δ 205.8, 133.3, 128.9, 92.1, 74.0, 34.4, 27.5, 26.7, 25.6, 23.1, 22.96, 18.9, 14.1, -0.42(3C); HRMS (EI) calcd for C₁₆H₂₉NO₃Si *m/z* 311.1917; found 311.1928; **10**, ¹H NMR (CDCl₃) δ 4.54 (t, *J*=5.2 Hz, 2H), 4.06 (m, 1H), 3.59 (s, 1H), 2.83 (dd, 1H), 2.62 (dd, *J*=17.1, 8.9 Hz,1H), 2.00–2.15 (m, 4H), 1.80 (s, 6H), 1.22– 1.32 (m, 4H), 0.85 (t, J=6.8 Hz, 3H); ¹³C NMR (CDCl₃) δ 210.06, 202.00, 107.59, 100.97, 72.15, 65.17, 44.87, 33.46, 29.91, 26.02, 22.11, 19.43, 13.79; HRMS (EI) calcd for C14H23NO4 *m/z* 269.1627; found *m/z* 269.1639; **11**, ¹H NMR (CDCl₃) δ 4.52–4.59 (m, 2H), 4.23–4.27 (m, 1H), 4.00–4.10 (m, 1H), 3.40 (s, 1H), 2.80 (s, 1H), 2.07–2.19 (m, 3H), 1.81–1.91 (m, 3H), 1.80 (s, 6H), 1.34–1.43 (m, 4H), 0.89 (t, J=6.6 Hz, 3H); ¹³C NMR (CDCl₃) δ 195.94, 106.37, 102.01, 72.57, 69.57, 65.82, 40.80, 34.45, 29.89, 28.90, 22.30, 20.84 (2C), 13.94; HRMS (EI) calcd for $C_{14}H_{25}NO_4$ –H₂O m/z 253.1678, found *m/z* 253.1690; Anal Calcd for C₁₄H₂₅NO₄: C, 61.99; H, 9.23; N, 5.17. Found: C, 61.02; H, 8.95; N, 5.00; **12**, ¹ H NMR (CDCl3) d 4.44 (t, *J*=7.1 Hz, 2H), 4.14 (t, *J*=6.8 Hz, 1H), 3.84 (m, 1H), 1.72–2.06 (m, 6H), 1.69 (s, 3H), 1.66 (s, 3H), 1.26–1.42 (m, 4H), 0.89 (t, *J*=4.5 Hz, 3H), 0.11 (s, 9H), 0.09 (s, 9H); ¹³C NMR (CDCl₃) δ 198.36, 104.38, 96.74, 72.36, 72.35, 67.43, 44.31, 34.48, 29.90, 25.81, 22.57, 20.63, 20.32, 14.08, 0.27, (6C); HRMS (EI) calcd for $C_{20}H_{41}NO_4Si_2$ *m/z* 4115.2574; found *m/z* 415.2575; **13**, ¹H NMR (CDCl₃) δ 4.68–4.71 (m, 1H), 4.11–4.14 (m, 1H), 3.10 (dd, *J*=14.7, 5.2 Hz,1H), 2.58 (dd, *J*=14.6, 8.1 Hz, 1H), 2.12–2.23 (m, 2H), 1.87–1.93 (m, 1H), 1.63–1.66 (m, 1H), 1.53 (s, 3H), 1.48 (s, 3H), 1.26–1.45 (m, 4H), 0.93 (t, *J*=6.7 Hz, 3H), 0.16 (s, 9H), 0.11 (s, 9H); ¹³C NMR (CDCl₃) δ 154.36, 145.05, 140.07, 86.82, 68.35, 65.69, 48.24, 35.01, 32.36, 30.56, 26.72(2C), 23.11, 13.90, 0.18 (3C), -0.02 (3C); HRMS (EI) calcd for $C_{20}H_{39}NO_3Si_2 m/z$ 397.2469; found m/z 397.2473.