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Abstract–Studies on the intramolecular nitrile oxide–allene cycloaddition are

reported.  The reaction shows a preference for reaction of the more remote p–bond.

Previously, we reported an intramolecular nitrile oxide–allene cycloaddition route to triacylmethanes.1  It

was suggested that potential formation of a strained bridgehead double bond contributed to the

regioselectivity as only 2 was produced in the event (Scheme 1).2  It was decided to study the

cycloaddition in another setting because many instances would not involve a bridgehead olefin as in

1fi3.3 We report here that the regioselection is turned over in two fused bicyclic systems.
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As shown in Scheme 2, 3,3-dimethylpropargyl chloride reacted with dibutyl cuprate to afford allene (4)

(55%).4  The allene was deprotonated with LDA and quenched with dimethylacetamide which yielded the

methyl ketone (5) in 53% yield.5  The anion derived from 5 underwent Michael addition to nitroethylene



to yield 68% of 6.  Dehydration of 6 using phenyl isocyanate generated the nitrile oxide (7) in situ, which

led to the production of isoxazoline (8) in the absence of the regioisomer (75%).6,7
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Other reaction conditions did not alter the regioselectivity.  For example, treatment of 6 with Boc2O and

4-DMAP produced 8 in 48% yield, and generation of the silyl nitronate produced 9 in 43% yield

(Scheme 3).  Under no circumstances did the a,b double bond react.
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To see if electronic factors were playing a role in the selectivity, the oxidation state of the ketone was

adjusted.  Condensation of the anion of 5 with 3-nitropropanal gave 10, Luche reduction of which

afforded diol (11) (49% for two steps).8  Double silylation of 11 afforded bis–TMS protected 12 in 90%

yield, and treatment of 12 with phenyl isocyanate was found to produce 13 in the absence of 14 (45%).7,9
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The results can be rationalized through a chairlike transition state in which the n-butyl group is

pseudoaxial, (i.e. A, in Figure 1).  In A, the nitrile oxide approaches the p bond in the same plane as the

allene methyls whereas B involves approach of the oxygen in an orthogonal plane.  If one assumes that

the axial alkyl group raises the energy of the chair, transition state B is lower in energy which would lead

to products like 8, 9 and 13.

Figure 1
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These results stand in contrast to the nitrone allene cycloaddition of terminal allenes in which it has been

shown that the internal p–bond of the allene is more reactive.10   In 15, for example, it is an H atom as

opposed to an n–butyl group which would be processed through the chairlike transition state in an axial

position.
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In conclusion, the INOC (intramolecular nitrile oxide cycloaddition) reaction is subject to regioselectivity

control when a bulky group is present in the a–position of the allene.11
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