Heterocycles, Vol. 62, 2004, pp. 655 - 666

BIOTRANSFORMATION OF (-)-MAALIOXIDE BY *ASPERGILLUS NIGER* **AND** *ASPERGILLUS CELLULOSAE***# Received, 8th September, 2003, Accepted, 24th October, 2003, Published online, 14th November, 2003**

Toshihiro Hashimoto,^{a)} Yoshiaki Noma,^{b)} Yoshiaki Gotoh,^{a)} Masami Tanaka, ^{a)} Shigeru Takaoka,^{a)} and Yoshinori Asakawa^{a)*}

Faculty of Pharmaceutical Sciences, Tokushima Bunri University,^a *Faculty of Human Life Sciences, Tokushima Bunri University,*^b*Yamashiro-cho, Tokushima 770-8514, Japan*

Abstract -A sesquiterpene cyclic ether, (-)-maalioxide (**1**) from the liverwort *Plagiochila sciophila* was biotransformed by *Aspergillus niger* and *A. cellulosae* to afford the structurally interesting compounds*.* The stereostructures of the metabolites were established by a combination of high resolution NMR spectrum, X-Ray crystallographic analysis and the chemical reaction.

INTRODUCTION

Microorganisms are able to transform a huge variety of organic compounds, such as terpene hydrocarbons, alkaloids, steroids, antibiotics and aminoacid. $\frac{1}{1}$ We are continuing to study the biotransformation of the secondary metabolites from crude drugs and liverworts by microorganisms²⁻⁴ and mammals⁵⁻⁶ to obtain some functional substances such as pheromones and perfumes. Recently, we reported the biotransformation of sesquiterpenoids such as dehydrocostuslactone, costunolide, α-, β-, and γ -cyclocostunolides, α-santonin and atractylon from crude drugs, a sesquiterpene, dehydropinguisenol⁸ from liverwort,

(-)-ambrox7 from animal origin by *Aspergillus niger A. cellulosae*, and *Botryospaeria dothidea* etc. (-)-Ambrox which possesses a powerful amber-type aroma was biotransformed by *A. niger* and *A. cellulosae* to afford the structurally interesting compounds as shown in Figure 1.⁷ It is noteworthy that the metabolic pathways of (-)-ambrox are strikingly different between *A. niger* and *A. cellulosae.* A metabolite, 1 oxoambrox by *A. cellulosae* indicated a good odor like (-)-ambrox.⁷

Figure 1. Biotransformation of (-)-ambrox by *Aspergillus niger* and *A. cellulosae*

The rare gorgonane-type sesquiterpene, (-)- and (+)-maalioxides were isolated from the liverwort *Plagiochila sciophila* 9-10 and *Valeriana wallichi*, 11 respectively. (-)-Maalioxide (**1**) have a five member ether linkage and a good odor as well as (-)-ambrox. In continuation of the biotransformation studies of the chemical constituents isolated from liverworts into biologically active compounds, the biotransformation of (-) maalioxide (**1**) was carried out by *Aspergillus niger* and *A.. cellulosae* IFO 4040. Compound (**1**) was easily converted to three metabolites (**2 4**) by *A. niger*, and a metabolite (**5**) by *A. cellulosae*. This paper deals with the structure elucidation of the four metabolites (**2 5**) of **1**. Their stereostructures were established by a combination of high-resolution NMR spectrum, X-Ray crystallographic analysis and chemical reaction.

Biotaransformation of (-)-Maalioxide (1) by *Aspergillus niger**A. niger* was inoculated and cultivated rotatory (100 rpm) in Czapek-pepton medium (pH 7.0 at 30°C for 2 days. (-)-Maalioxide (**1**)(100 mg/200 mL) was added to the medium and further cultivated for 2 days. The crude metabolites obtained from the culture broth by EtOAc extraction were chromatographed on silica gel (*n*-hexane-EtOAc gradient) to give three new componds **2** (6.2%), **3** (53.6%) and **4** (11.0%), respectively (Figure 2).

Figure 2. Biotransformation of (-)-maalioxide (**1**) by *Aspergillus niger*.

Compound (2) $\{[\alpha]_D -21.9^\circ$ (CHCl₃)} was obtained as a colorless needles (mp 130-133°), whose molecular formula, $C_{15}H_{26}O_2$ was established by high resolution electron impact mass spectroscopy (HR-EIMS)([M]⁺ m/z 238.1918). The FT-IR spectrum of 2 indicated the presence of a hydroxyl (3397 cm⁻¹) group. The ¹H (Table 1) and ¹³C NMR (Table 2) spectra of **2** showed the presence of four tertiary methyl $[\delta_{H} 0.89, 1.04,$ 1.18, 1.32 (each 3H, *s*)] groups, a secondary alcohol $[\delta_H$ 3.28 (1H, *dd*, J=3.8, 11.5 Hz); δ_c 81.1 (*d*)] and a ether linkage $[\delta_c 77.8 \text{ (s)}, 80.7 \text{ (s)}]$. The carbon signals at C-1, C-2 and C-10 positions of 2 appeared at lower field (+37.9, +9.4 and +4.8 ppm) in comparison with that of **1** as shown in Table 2. Compound (**2**) showed the correlations between (i) H-1 / C-2, C-9 and C-14; (ii) H-14 / C-1, C-5, C-9 and C-10 in HMBC spectrum (Figure 3), and the NOEs between H-1 / H-2α, H-3α, H-5 and H-9α in the NOESY spectrum (Figure 3). From the above careful analysis of its 2D NMR spectrum, the structure of metabolite **2** was formulated as 1β-hydroxymaalioxide.

Figure 3. Important HMBC and NOESY correlations of compound (**2**).

Compound (3) $\{[\alpha]_D - 28.6^\circ \text{ (CHCl}_3)\}\$ was obtained as a colorless prisms (mp 135-137°), whose molecular formula, $C_{15}H_{26}O_3$ was established by HR-EIMS ([M]⁺ m/z 254.1882). The FT-IR spectrum of 3 indicated the presence of a hydroxyl (3379 cm⁻¹) group. The ¹H (Table 1) and ¹³C NMR (Table 2) spectra of 3 showed the presence of two secondary alcohol $[\delta_H 3.49 (1H, dd, J=3.8, 11.3 Hz), 3.64 (1H, dd, J=4.9,$ 11.3 Hz); δ_c 81.4 (*d*), 82.7 (*d*)]. Acetylation of **3** afforded a diacetate (**6**) [δ_H 2.00 (6H, s, 2xOAc); 1729 cm-1 (COO)] indicating that compound (**3**) has two hydroxyl groups. Compound (**3**) showed the correlations between (i) H-1 / C-2, C-9 and C-14; (ii) H-9 / C-1, C-14 and C-8; (iii) H-14 / C-1, C-5, C-9 and C-10 in HMBC spectrum, (Figure 4), and the NOEs between (i) H-1/ H-2α, H-3α, H-5 and H-9; (ii) H-9 / H-1, H-5, H-7 α and H-8 α in the NOESY spectrum (Figure 4). From the above spectral and chemical evidence, the relative structure of compound (**3**) was deduced and finally established by X-Ray crystallographic analysis (Figure 5) as 1β, 9β-dihydroxymaalioxide.

O O 1 9

Figure 4. Important HMBC and NOESY **Figure 5.** ORTEP drawing of **3**. correlations of compound (**3**).

Compound (4) $\{[\alpha]_D -16.7^\circ \text{ (CHCl}_3)\}\$ has the same molecular formula, $C_{15}H_{26}O_3$ (HR-EIMS; $[M]^+$ m/z 254.1868) with that of compound (**3**). The 1 H (Table 1) and 13C (Table 2) NMR spectrum of **4** showed the presence of a primary alcohol $[\delta_H 3.48, 3.51(2H, each d, J=11.3 Hz); \delta_C 70.4 (t)]$ and a secondary alcohol $[\delta_H 3.30 \text{ (1H, } dd, \text{ J=4.9, 113 Hz}); \delta_C 81.0 \text{ (}d)]$. Compound (4) showed the correlations between (i) H-1 / C-2 and C-14; (ii) H-12 / C-6, C-11 and C-13 in HMBC spectrum (Figure 6), and the NOEs between (i)H-1/ H-2α, H-3α, H-5 and H-9α; (ii) H-12/ H-6 and H-15 in the NOESY spectrum (Figure 6). From the above spectral evidence, the relative structure of compound (**4**) was deduced as 1β,12 -dihydroxymaalioxide.

Figure 6. Important HMBC and NOESY correlations of compound (**4**).

In time course (Figure 7) of biotransformation of (-)-maalioxide (**1**) by *A. niger*, the yield of **2** increased with decreasing that of **1**, subsequently the yields of **3** and **4** increased with decreasing that of **2**. 1-Aminobezotriazole, an inhibitor of cytochrome P-450 inhibited the oxidation process of **1** into **2**-**4**. For the oxidation from **1** to **2**-**4**, cytochrome P-450 may be concerned.

Figure 7. Time course of biotransformation of (-)-maalioxide (**1**) by *Aspergillus niger*

Biotaransformation of (-)-Maalioxide (1) by *Aspergillus cellulosae**A. cellulosae* was inoculated and cultivated rotatory (100 rpm) in Czapek-pepton medium (pH 7.0 at 30°C for 2 days. (-)-Maalioxide (**1**)(100 mg/200 mL) was added to the medium and further cultivated for 2 days. The crude metabolites obtained from the culture broth by EtOAc extraction were chromatographed on silica gel (*n*-hexane-EtOAc gradient) to give a metabolite (**5**)(29.9%) (Figure 8).

Figure 8. Biotransformation of (-)-maalioxide (**1**) by *A. cellulosae*.

Compound (5) $\{[\alpha]_D - 51.4^\circ \text{ (MeOH)}\}$ has the same molecular formula, $C_{15}H_{26}O_2$ (HR-EIMS)([M]⁺ m/z 238.1923) with that of compound (**2**). The FT-IR spectrum of **5** indicated the presence of a hydroxyl (3392 cm⁻¹) group. The ¹H (Table 1) and ¹³C NMR (Table 2) spectra of 5 showed a secondary alcohol [δ _H 3.61 (1H, *ddd*, J=4.4, 9.3, 9.3 Hz); δ_c 72.6 (*d*)] and a ether linkage $[\delta_c$ 78.8 (*s*), 81.3 (*s*)]. The carbon signals at C-6, C-7 and C-8 positions of **5** appeared at lower field in comparison with that of **1** as shown in Table 2. Compound (**5**) showed the correlations between H-5, H-6, H-8 and H-9 / C-7 in HMBC spectrum, (Figure 9), and the NOEs between (i) H-7 / H-5, H-13, H-8 α in the NOESY spectrum (Figure 9). From the above spectral evidence, the relative structure of compound (**5**) was deduced and finally established by X-Ray crystallographic analysis (Figure 10) as 7β-hydroxymaalioxide.

Position	$\mathbf{1}$	$\overline{2}$	$\mathbf{3}$	$\overline{\mathbf{4}}$	5
1α -H	0.99 _m	3.28 dd	3.64 dd	3.30 dd	$1.13\ m$
		(3.8, 11.5)	(4.9, 11.3)	(4.9, 11.3)	
1β -H	$1.44\ m$				1.53 m
2α -H	$1.66\,m$	1.71 m	1.79 m	1.69 m	1.69 m
2β -H	1.54 m	1.53 m	1.56 m	1.51 m	1.53 m
3α -H	1.30 m	1.30 m	1.45 m	1.35 m	1.27 m
3β -H	1.86 m	1.87 m	1.84 m	1.89 m	1.86 m
$5-H$	1.14 d	1.17 d	1.15 d	1.25 d	1.16 d
	(13.2)	(13.8)	(13.8)	(13.7)	(13.7)
$6-H$	$1.75\ m$	1.84 ddd	1.91 ddd	1.92 m	1.79 dd
			$(4.7, 11.8, 13.8)$ $(4.7, 11.8, 13.8)$		(9.3, 13.7)
7α -H	$1.09\ m$	1.26 m	$1.25\ m$	1.33 m	3.61 ddd
					(4.4, 9.3, 9.3)
7β -H	1.75 m	1.73 m	1.72 m	1.71 m	
8α -H	1.61~m	1.71 m	1.67 m	1.75 m	1.78 m
8β -H	$1.41\ m$	1.51 m	1.52 m	1.56 m	1.49 m
9α -H	1.03 m	1.05 m	3.49 dd	1.06 m	0.99 _m
			(3.8, 11.3)		
9β -H	1.51 m	$1.77 \; m$		1.79 m	1.56 m
$12-H$	$1.31\ s$	1.32 s	1.33 s	3.48, 3.51	1.4 s
				(each d, 11.3)	
$13-H$	1.03 s	1.04 s	1.04 s	1.07 s	1.21 s
$14-H$	0.89 s	0.89 s	0.95 s	0.89 s	0.92 s
$15-H$	$1.21\ s$	1.18s	1.22 s	1.19 s	1.14 s

Table 1. 600 MHz¹H NMR spectral ata of ompounds $(1-5)$ in CDCl₃³

^aChemical shifts are in δ values. Coupling constants in Hz are in parenthesis.

position	$\mathbf{1}$	$\overline{2}$	$\mathbf{3}$	$\boldsymbol{4}$	5	6
$C-1$	43.2(t)	81.1(d)	81.4(d)	81.0(d)	79.9 (d)	42.3 (t)
$C-2$	21.3(t)	30.7(t)	29.5 (t)	30.5 (t)	26.8(t)	21.5(t)
$C-3$	40.7 (t)	40.3 (t)	38.6 (t)	40.3 (t)	38.4 (t)	40.4 (t)
$C-4$	78.5(s)	77.8 (s)	77.5 (s)	78.8 (s)	77.7(s)	78.8 (s)
$C-5$	58.4 (d)	57.6 (d)	55.7 (d)	56.8 (d)	55.7 (d)	56.5 (d)
$C-6$	43.1 (d)	42.6 (d)	42.0 (d)	38.0 (d)	42.2(d)	50.5 (d)
$C-7$	27.5(t)	24.9(t)	24.7(t)	24.9(t)	24.4 (t)	72.6(d)
$C-8$	22.3(t)	21.1(t)	30.1 (t)	21.3(t)	27.6(t)	32.4 (t)
$C-9$	41.0 (t)	38.0 (t)	81.7(d)	37.7(t)	80.7(d)	40.4 (t)
$C-10$	34.1(s)	38.9(s)	41.6(s)	39.1 (s)	41.4(s)	33.4(s)
$C-11$	81.4(s)	80.7(s)	82.7(s)	83.8(s)	82.1(s)	81.3(s)
$C-12$	30.7 (q)	30.7 (q)	30.7 (q)	70.4 (t)	30.7 (q)	32.4 (q)
$C-13$	25.8 (q)	26.0 (q)	25.9(q)	21.0(q)	25.9(q)	25.3(q)
$C-14$	17.9 (q)	10.9 (q)	6.7 (q)	10.9 (q)	8.5 (q)	17.8 (q)
$C-15$	22.8 (q)	23.2(q)	23.3 (q)	23.7 (q)	23.3 (q)	22.8 (q)
OCOCH ₃					21.2(q)	
OCOCH ₃					21.2(q)	
OCOCH ₃					171.5(s)	
OCOCH ₃					171.5(s)	

Table 2 125 MHz ¹³C NMR spectral data of compounds $(1-6)$ in CDCl₃^a

 a^a Chemical shifts from TMS in CDCl₃ and assignments from HMQC and HMBC spectra

We reported that $(-)$ -maalioxide (1) was treated with m-chloroperbenzoic acid (mCPBA) in CHCl₃ under reflux to afford 2α−hydroxymaalioxide (2.0%), 7β-hydroxymaalioxide (**5**)(1.2%) and 8α-hydroxymaalioxide (1.5%) in the low yield. ¹² In *Aspergillus niger*, hydroxylation at C-1β, C-9β and C-12 occurred to afford **2**~**4**, while hydroxylation at C-7β occurred in *A.cellulosae* to afford **5**. It is noteworthy that the position of oxidation of (-)-maalioxide (**1**) are strikingly different between *A. niger*, *A. cellulosae* and mCPBA as shown in Figure 11. Metabolites (**2**- **5**) obtained by biotransformations of (-)-maalioxide (**1**) by two fungi possessing a good odor did not show an effective odor.

Figure 11. The position of oxidation of (-)-maalioxide (**1**) by *Aspergillus niger, A. cellulosae* and *m*CPBA

EXPERIMENTAL

General IR spectra were measured on a JASCO FT-IR 500 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Varian untiy 600 (¹H; 600 MHz, ¹³C; 150 MHz) or a Varian Unity 200 (¹H; 200 MHz, $13C$; 50 MHz) spectrometer. The solvent used for NMR spectra was CDCl₂ unless otherwise stated. MS spectra were measured on a JEOL JMS HX-100 or a JEOL AX-500 spectrometer. The specific rotation was taken on a JASCO DIP-140 polarimeter. X-Ray cryrstallographic analysis was carried out by a Mac Science MXC18 diffractiotometer. Slica gel 60 for column chromatography was purchased from Merk.

Isolation of maalioxide (1) Dried powders (869 g) of *Plagiochila sciophila* collected in kamiyama-cho, Tokushima, Japan, in March 2001, was extracted with Et₀O (5 L) for 1 week at rt. The Et₀O extract (24.789 g) was chromatographed on silica gel (500 g) with a gradient solvent system of *n*-Hexane-AcOEt increasing the amount of 5% portions AcOEt stepwise to give a number of fractions. 20% AcOEt-*n*-Hex. eluate (Fr. 28-35) was evaporated in *vacuo* to afford the crude oil (3.0278 g), which was rechromatographed on silica gel (100 g) with a gradient solvent system of *n*-Hexane-Et₂O increasing the amount of 5% portions Et₂O stepwise to give (-)-maalioxide (**1**)(0.291 g) from 30% Et₂O-n-Hex. eluate (fr. 56-67) as

colorless needles. mp 65-66° (lit.,¹⁰ mp 66°); [αl_{D}^{21} -34.4° (*c* 1.02, CHCl₃)[lit.,¹⁰ -34.5° (*c* 1.00, CHCl₃)]; EIMS: m/z 222 (M⁺), 207 (100), 179, 149; HR-EIMS: m/z 222.1975 (M⁺), C₁₅H₂₆O requires 222.1984; FT-IR (KBr)cm⁻¹: 2932, 1377, 1050; ¹H-NMR (600 MHz) spectral data in CDCl₃ (Table 1); ¹³C NMR (125 Hz) spectral data in CDCl₃ (Table 2).

Microorganism and media *Aspergillus niger* was isolated in our laboratories from soil in Osaka prefecture*,* and was identified according to its physiological and morphological characters. *Aspergillus cellulosae* IFO 4040 was obtained from the Department of Microbiology, Osaka University, Osaka prefecture, Japan. A Czapek-pepton medium [1.5% sucrose, 1.5% glucose, 0.5% polypeptone, 0.1% K_2HPO_4 , 0.05% KCl and 0.001%FeSO₄ 7H₂O in distilled water (pH 7.0)] was used for the biotransformation of substrate by microorganism.

Biotransformation of maalioxide (1) by *Aspergillus niger*

microorganism, solution of (-)-maalioxide (**1**)(100 mg) in EtOH (0.5 mL) was added to the media culture of *A. niger.* The incubation was then continued for a further 2 days at 30 . After the completion of the incubation time, the culture was filtered *in vacuo* and the broth was extracted with EtOAc (3x100 mL). The extracts were dried over MgSO₄ and the solvent was evaporated *in vacuo* to give the crude extract (145.6 mg) as an oil. The crude extract was chromatographed on silica gel (10 g) with a gradient solvent system of *n*-Hexane-AcOEt increasing the amount of 5% portions AcOEt stepwise to afford 1β-hydroxymaalioxide (**2**)(6.6 mg; 6.2%) from fr. 25-28, 1β, 9β-dihydroxymaalioxide (**3**)(61.3 mg; 53.6%) from fr. 44-48 and 1β, 12-dihydroxymaalioxide (**4**)(12.6 mg; 11.0%) from fr. 51-54, respectively. and incubated at 30 for 2 days in a rotary shaker operating at 100 rpm. After full growth of the An Erlenmyer flask (500 mL) containing 200 mL medium was inoculated with a suspension of *A. niger*

1β-Hydroxymaalioxide (2) colorless needles, mp 130-133°, $[\alpha]_D^{18}$ -21.9° (*c* 0.67, CHCl₃); EIMS: m/z 238 (M⁺), 223 (100), 195, 162, 136; HR-EIMS: m/z 238.1918 (M⁺), C₁₅H₂₆O₂ requires 238.1933; FT-IR (KBr)cm⁻¹: 3397 (OH), 2925, 1379, 1081; ¹H-NMR (600 MHz) spectral data in CDCl₃ (Table 1); ¹³C NMR (125 Hz) spectral data in CDCl₃ (Table 2).

1β, 9β-Dihydroxymaalioxide (3) colorless prisms, mp 135-137°, $[\alpha]_D^{18}$ -28.6° (*c* 1.02, CHCl₃); EIMS: *m/z* 254 (M⁺), 239 (100), 195; HR-EIMS: *m/z* 254.1882 (M⁺), C₁₅H₂₆O₃ requires 254.1882; FT-IR (KBr)cm⁻¹: 3358 (OH), 2938, 2866, 1063; ¹H-NMR (600 MHz) spectral data in CDCl₃ (Table 1); ¹³C NMR (125 Hz)

spectral data in CDCl₃ (Table 2).

1β, 12-Dihydroxymaalioxide (4) colorless oil, $[\alpha]_D^{18}$ -16.7° (*c* 0.87, CHCl₃); EIMS: *m/z* 254 (M⁺), 239, 223 (100), 205, 163; HR-EIMS: m/z 254.1868 (M⁺), C₁₅H₂₆O₃ requires 254.1882; FT-IR (KBr)cm⁻¹: 3379 (OH), 2936, 1380, 1042; ¹H-NMR (600 MHz) spectral data in CDCl₃ (Table 1); ¹³C NMR (125 Hz) spectral data in CDCl₃ (Table 2).

Acetylation of 3 A solution of **3** (10 mg) in pyridine (1 mL) was treated with acetic anhydride (1 mL). The mixture was stirred overnight at rt. Water was added and the mixture was extracted with CHCl₃. The organic phase was washed with 1N HCl, 5% NaHCO₃ and brine, dried $(MgSO₄)$, and evaporated to give a residue. The residue was purified by a silica gel column chromatography with *n*-hexane-AcOEt gradient to afford 1β, 9β-diacetoxymaalioxide (6)(11 mg, 82.7%) as colorless oil; $[\alpha]_D^{21}$ -18.6° (*c* 1.01, CHCl₃); EIMS : *m/z* 338 (M⁺), 323 (100), 263, 237; HR-EIMS: *m/z* 338.2079 (M⁺), C₁₉H₃₀O₅ requires 338.2093; FT-IR (KBr)cm-1: 2938, 1729 (C=O), 1372, 1026; ¹ H NMR(CDCl3): δ 1.05 (3H, s, H-13), 1.08 (3H, *s*, H-14), 1.24 (3H, s, H-15), 1.33 (3H, *s*, H-12), 2.00 (6H, *s,* 2xOAc), 4.64 (1H, *dd*, J= 3.9, 11.2 Hz, H-9), 4.84 (1H, *dd*, J = 4.9, 11.3 Hz, H-1); ¹³C NMR (125 Hz) spectral data in CDCl₃ (Table 2).

The crystal data for 3 Orthorhombic, space group $P2_12_12_1$, $a=6.299$ (3)Å, $b=14.070$ (9)Å, $c=16.324$ (2)Å, $V=1447$ (2)Å³, $Z=4$, $D_x=1.094$ Mg m⁻³, $D_x=1.094$ Mg m⁻³, μ (Mo K α) =0.070 mm⁻¹, Final R and *R*_w were 0.084 and 0.198 for 1488 reflections. The structure was solved by direct method (Monte-Carlo Multan) and refined by full-matrix least-squares techniques. Diffraction data were obtained using a Mac Science MXC18 diffractiotometer at rt. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft & Mac Science, Japan).

Biotransformation of maalioxide (1) by *Aspergillus cellulosae A. cellulosae* was rotatory cultivated (100 rpm) in Czapek-pepton medium at 30°C for 2 days. (-)-maalioxide (**1**)(100 mg / 200 mL) was added to the medium and further cultivated for 2 days. The crude metabolites obtained from the culture broth by EtOAc extraction were chromatographed on silica gel (*n*-hexane-EtOAc gradient) to give 7βhydroxymaalioxide (**5**)(32.1 mg; 29.9%) with the recovery of **1** (20.5 mg; 20.5%).

7β-Hydroxymaalioxide (5) colorless needles, mp 134-136°, $[\alpha]_D^{18}$ -51.4° (*c* 1.05, MeOH); EIMS: m/z 238 (M⁺), 223 (100), 195, 187, 147; HR-EIMS: m/z 238.1923 (M⁺), C₁₅H₂₆O₂ requires 238.1933; FT-IR (KBr)cm⁻¹: 3392 (OH), 2926, 1461, 1082; ¹H-NMR (600 MHz) spectral data in CDCl₃ (Table 1); ¹³C

NMR (125 Hz) spectral data in CDCl₃ (Table 2).

The crystal data for 5 Orthorhombic, space group $P2_12_12_1$, $a=9.439$ (7)Å, $b=11.045$ (7)Å, $c=13.858$ (13)Å, $V = 1445$ (2)Å³, $Z = 4$, $D_x = 1.096$ Mg m⁻³, $D_x = 1.096$ Mg m⁻³, δ (Mo K α) = 0.070 mm⁻¹, Final *R* and R_w were 0.107 and 0.208 for 1551 reflections.

REFERENCES

- Stuttgart, ermany, p. 1. 1. K. Kieslich, Microbial Transformation of Non-Steroid Cyclic Compounds, 1976, Georg Thieme
- 2. Y. Noma and Y. Asakawa, *Biotechnology in Agriculture and Forestry*, ed. by Y. P. S. Bajaj, 1994, Berlin, Springer, Vol. **28**, p. 185.
- 3. Y. Noma and Y. Asakawa, *Biotechnology in Agriculture and Forestry*, ed. by Y. P. S. Bajaj, 1995, Berlin, Springer, Vol. **33**, p. 62.
- 4. Y. Noma and Y. Asakawa, *Biotechnology in Agriculture and Forestry*, ed. by Y. P. S. Bajaj, 1998, Berlin, Springer, Vol. **41**, p. 194.
- 5. T. Matsumoto, N. Hayashi, T. Ishida, and Y. Asakawa, *J. Pharm. Sci.,* 1990, **79**, 540.
- 6. T. Matsumoto, T. Ishida, T. Yoshida, H. Terao, Y. Takeda, and Y. Asakawa, *Chem. Pharm. Bull*., 1992*,* **40**, 1721.
- 7. T. Hashimoto, Y. Noma, and Y.Asakawa, *Heterocycles,* 2001, **54**, 529.
- 8. E. H. Lahlou, Y. Noma, T. Hashimoto, Y. Noma, and Y. Asakawa, *Phytochemistry,* 2000, **54**, 455.
- 9. Y. Asakawa, in *Progress in the Chemistry of Organic Natural Products*, ed. by W. Herz, W. Kirby, R. E. Moore, W. Steglich, and Ch. Tamm, 1995, Wien, Springer, Vol. **65**, p. 1.
- 10. A. Matsuo, M. Nakayama, S. Sato, T. Nakamoto, S. Uto, and S. Hayashi, *Experientia,* 1974, **30**, 321.
- 11. C. S. Narayanan, K. S. Kulkarni, A. S. Vaidya, S. Kanthamani, G. L. Kumari, B. V. Bapat, S. N. Kulkarni, G. R. Kelkar, and S. C. Bhattacharyya, *Tetrahedron*, 1964, **20**, 963.
- 12. M. Tori, M. Sono, and Y. Asakawa, *Bull. Chem. Soc. Jpn*., 1990, **63**, 1770.