IMPROVEMENT IN THE REGIOSELECTIVITY IN THE RUTHENIUM-CATALYZED METATHESIS REACTION OF 2-AZABICYCLO[2.2.1]-HEPT-5-EN-3-ONE (ABH) WITH ALLYLTRIMETHYLSILANE

Minoru Ishikura,* Miyako Hasunuma, and Makoto Saijo

Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan. e-mail: ishikura@hoku-iryo-u.ac.jp

Abstract -2-Azabicyclo[2.2.1]hept-5-en-3-one (ABH) (1) with *N*-trialkylsilyl group was subjected to a ring-opening cross-metathesis reaction with allyl-trimethylsilane in the presence of a ruthenium catalyst, allowing the predominate formation of *rel-*(3*R*,5*S*)-3-(4,4,-dimethyl-4-silapentyl)-5-ethylpyrrolidin-2-one (**5**) over *rel-*(3*R*,5*S*)-5-(4,4,-dimethyl-4-silapentyl)-3-ethylpyrrolidin-2-one (**6**).

2-Azabicyclo[2.2.1]hept-5-en-3-one (ABH) (**1a**) is a versatile class of bicyclic lactam readily available from the Diels-Alder reaction of cyclopentadiene with phenylsulfonylcyanide¹ and is characteristic of bicyclo[2.2.1]heptane ring systems having greater ring strain energy. In view of its synthetic value, **1a** has been extensively used as a potential synthton for the construction of cyclopentane moieties in carbocyclic nucleosides,² while a ruthenium-catalyzed metathesis reaction of ABH (**1**) is limited to only a few examples.³ In connection with our recent interest in the synthetic potential of **1a**,⁴ we have previously reported the ruthenium-catalyzed ring-opening cross-metathesis reaction of *N*-acyl-ABH with allyltrialkylsilanes, which has proceeded in a clean and efficient manner.⁵ However, we encountered a problem in that two isomers (**3**) and (**4**), arising from complexes **A** and **B**, were produced in a ratio of approximately ~2:1 instead of the known regioselectivity.^{3a} Our previous report showed that several attempts at exposing *N*-acyl-ABH to allyltrialkylsilanes under various conditions (i.e., variations in catalyst, reaction temperature, and solvent) failed to circumvent the low selectivity.⁵

The nitrogen in 1a is known to have the unique feature of being able to participate to the neighboring carbon at position 6, thus allowing the generation of a transannular carbonium ion.⁶ We were intrigued as to whether the unique participation of the nitrogen might feasibly promote the regioselective generation of complexe A or B. Thus, 1 with *N*-electron-donating group was subjected to a metathesis

reaction with allyltrimethylsilane (2), and the predominate formation of 3 over 4 was eventually found. The preliminary experimental results are described in this paper.

All reactions were run using **1** (1 mmol) and **2** (1.2 mmol) in the presence of a ruthenium catalyst (3 mol%) in CH_2Cl_2 at room temperature for 1 h under an argon atmosphere, followed by removal of the trialkylsilyl group with *n*-Bu₄NF (in the cases of **1c**, **1d**). The reaction mixture was immediately subjected to catalytic hydrogenation (H₂, 10% Pd-C in EtOH), and separated by flash chromatography to

give a small amount of **7** and a mixture of **5** and **6** whose ratio was determined by gas chromatography (GC) (Scheme and Table).⁷

We chose **1a** as our initial metathesis partner in combination with **2**, and careful separation of the reaction mixture by flash chromatography allowed the isolation of *cis*-**3a** and *trans*-**3a**,⁸ which gradually decomposed when left standing at room temperature. After the catalytic hydrogenation of the reaction

	Catalyst ^a	CH ₂ Cl ₂ (mL)	Yield (%) of 5 and 6	Yield (%) of 7	ratio of 5 : 6
1a	А	10	68	3 (7a)	(5a ∶ 6a = 2 ∶ 1)
1b	А	10	72	3 (7b)	(5b ∶ 6b = 3 ∶ 1)
1c	А	10	72	3 (7a)	(5a ∶ 6a = 7 ∶ 1)
1c	А	20	73	2 (7a)	(5a ∶ 6a = 5 ∶ 1)
1c	А	40	72	3 (7a)	(5a ∶ 6a = 4 ∶ 1)
1c	В	10	75	2 (7a)	(5a ∶ 6a = 13 ∶ 1)
1c	С	10	70	3 (7a)	(5a ∶ 6a = 10 ∶ 1)
1d	А	10	60	3 (7a)	(5a : 6a = 12 : 1)
1d	В	10	67	2 (7a)	(5a ∶ 6a = 14 ∶ 1)
1d	С	10	60	2 (7a)	(5a ∶ 6a = 8 ∶ 1)
^a Catalyst	:: A: Cl, Cl¶	PCy ₃ /, Ph Ru=- PCy ₃	B: CI, CI ^{FR} CI ^{FR} F	Mes u - Ph °Cy ₃	C:

Table Rection of 1 with 2 in the presence of Ru complexes

IMes = 1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene

mixture, a mixture of **5a** and **6a** was obtained, but in low selectivity. The same treatment of **1b** with **2** still resulted in low selectivity (**5b**:**6b**=3:1). Then, further effort was focused on the use of **1c** with *N*-*tert*-butyldimethylsilyl (TBDMS) group. We were delighted to find that reaction of **1c** improved the regioselectivity, producing **5a** in higher preference to **6a**. As seen in Table, it is highly desirable to run the reaction of **1c** with **2** in the presence of the Grubbs' second generation catalyst in CH_2Cl_2 (10 mL) for greater regioselectivity. *N*-Triisopropylsilyl-ABH (**1d**) was also effective in improving the regioselectivity, whereas the use of **1e** with *N*-triphenylsiyl group turned out to be troublesome, affording unidentified products. Subjection of 2-azabicyclo[2.2.2]oct-5-en-3-one (**8**), possessing less ring strain energy than **1c**, to the reaction under the same conditions failed to produce any metathesis products, and resulted in the recovery of **8**.

In summary, we have described the improvement in the regioselectivity in the ring-opening crossmetathesis reaction of 1 with 2 in the presence of a ruthenium catalyst, and the use of *N*-trialkylsilyl-ABH (1c,d) was found to be crucial in allowing the predominate formation of **5a** over **6a**. Whilst the detailed mechanism is not yet known, the intervention of the nitrogen participation in 1 is worthy of further consideration.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in Aid for Scientific Research (No. 13672226) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors thank Kuraray Co., Ltd. for providing the ABH.

REFERENCES AND NOTES

- 1 G. J. Griffiths and F. E. Previdoli, J. Org. Chem., 1993, **58**, 6129.
- L. A. Agrofoglio and S. R. Challand, "Acyclic, Carbocylic and L-Nucleosides," Kluwer Academic Publishers, Dordrecht, 1998; M. Ferrero and V. Gotor, *Chem. Rev.*, 2000, **100**, 4319; R. Vince and M. Hua, *J. Med. Chem.*, 1990, **33**, 17; S. J. C. Taylor, A. G. Sutherland, C. Lee, R. Wisdom, S. Thomas, S. M. Roberts, and C. Evans, *J. Chem. Soc., Chem. Commun.*, 1990, 1120; B. L. Bray, S. C. Dolan, B. Halter, J. W. Lackey, M. B. Schilling, and D. J. Tapolczay, *Tetrahedron Lett.*, 1995, **36**, 4483; C. F. Palmer, R. McCague, G. Ruecroft, S. Savage, S. J. C. Taylor, and C. Ries, *Tetrahedron Lett.*, 1996, **37**, 4601.
- 3 a) M. F. Schneider, N. Lucas, J. Velder, and S. Blechert, *Angew. Chem., Int. Ed. Engl.*, 1997, **36**, 257; b) O. Arjona, A. G. Csaky, R. Medel, and J. Plumet, *J. Org. Chem.*, 2002, **67**, 1380.
- 4 M. Ishikura, S. Kudo, A. Hino, N. Ohnuki, and N. Katagiri, *Heterocycles*, 2000, **53**, 1499; M. Ishikura, A. Murakami, and N. Katagiri, *Heterocycles*, 2002, **58**, 317; M. Ishikura, A. Murakami, and N. Katagiri, *Org. Biomol. Chem.*, 2003, **1**, 452.
- 5 M. Ishikura, M. Saijo, and A. Hino, *Heterocycles*, 2002, **57**, 241; M. Ishikura, M. Saijo, and A. Hino, *Heterocycles*, 2003, **59**, 573.
- 6 C. F. Palmer, K. P. Parry, S. M. Roberts, and V. Sik, J. Chem. Soc., Perkin Trans. 1, 1992, 1021.
- 7 GC with FID detector: column: CBP1 capillary column (25 m x 0.53 mmID x 1.5 μm thickness). Temperature: column: 150°C (2 min) – 150 to 170°C (1°C/min) – 170 to 250°C (20°C/min), injector: 150°C, detector: 150°C.
- 8 *trans-3*a: oil. IR (neat): 3432, 3204, 3076, 1692 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.00 (s, 9H), 1.48 (d, 2H, J=8.1 Hz), 1.60-1.69 (m, 1H), 2.40-2.50 (m, 1H), 3.05 (q, 1H, J=8.1 Hz), 4.06 (q, 1H, J=7.4 Hz), 5.11 (d, 1H, J=10.3 Hz), 5.22 (d, 1H, J=16.6 Hz), 5.28 (dd, 1H, J=15.5, 7.4 Hz), 5.55 (dtd, 1H, J=1.1, 8.1, 15.5 Hz), 5.75 (ddd, 1H, J=7.1, 10.3, 16.6 Hz), 5.87 (br s, 1H). ¹³C-NMR (CDCl₃) δ: -0.19, 23.1, 36.1, 45.5, 55.3, 116.3, 125.1, 130.3, 138.9, 178.8. HR-MS *m/z*: Calcd for C₁₂H₂₁NOSi: 223.1392. Found: 223.1418. *cis-3*a: oil. IR (neat): 3432, 3198, 3050, 1690 cm⁻¹. ¹H-NMR (CDCl₃) δ: 0.00 (s, 9H), 1.48 (dd, 1H, J=8.3, 13.6 Hz), 1.50-1.63 (m, 2H), 2.42-2.51 (m, 1H), 3.33 (q, 1H, J=9.3 Hz), 4.07 (q, 1H, J=7.5 Hz), 5.11 (d, 1H, J=10.1 Hz), 5.22 (d, 1H, J=17.0 Hz), 5.23-5.28 (m, 1H), 5.66 (q, 1H, J=10.1 Hz), 5.73 (ddd, 1H, J=7.1, 10.1, 17.0 Hz), 6.03 (br s, 1H). ¹³C-NMR (CDCl₃) δ: -1.7, 19.0, 36.8, 40.6, 55.4, 116.6, 124.1, 130.3, 138.7, 178.5. HR-MS *m/z*: Calcd for C₁₂H₂₁NOSi: 223.1392. Found: 223.1392. Found: 223.1362.