BRIAEXCAVATOLIDE W, A NEW DITERPENOID FROM BRIAREUM EXCAVATUM

Shwu-Li Wu,^{a,b} Ping-Jyun Sung,^c Jui-Hsin Su,^a Guey-Horng Wang,^d and Jyh-Horng Sheu^{a,*}

^aDepartment of Marine Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C. E-mail: sheu@mail.nsysu.edu.tw

^bThe Center for General Education, National Kaohsiung Institute of Marine Technology, Kaohsiung 811, Taiwan, R.O.C.

[°]National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung 944, Taiwan, R.O.C.

^dThe Center for General Education, Hsing Kuo University of management, Tainan 709, Taiwan, R.O.C.

Abstract – A new briarane-type diterpenoid, briaexcavatolide W (1), has been isolated from the gorgonian coral *Briareum excavatum*. The structure was elucidated by spectroscopic methods.

In the previous studies by our research group, a series of new briarane-type diterpenoids, including excavatolides A–M,^{1,2}U–Z,³ and briaexcavatolides A–V,^{4–7} have been isolated from the gorgonian coral *Briareum excavatum* (Nutting) (Anthozoa, Octocorallia, Gorgonacea, Briareidae).⁸ Compounds of this type continue to intrigue investigators because of the structural novelty, complexity and various biological activities.⁹ In this paper, we report here a minor new polyoxygenated diterpenoid, briaexcavatolide W (1), from the gorgonian *B. excavatum*.

Briaexcavatolide W (1) was obtained as a white powder. The HRFABMS of 1 provided a pseudomolecular ion $[M + H]^+$ at m/z 551.2484, indicating the molecular formula $C_{28}H_{38}O_{11}$ and ten degrees of unsaturation for this metabolite. The IR spectrum revealed absorption bands for hydroxyl (3463 cm⁻¹), and ester carbonyl (1734 cm⁻¹) moleties. The FABMS of 1 exhibited peaks at m/z 551 (M + H)⁺, 533 (M + H - H₂O)⁺, 491 (M + H - HOAc)⁺, 473 (M + H - HOAC - H₂O)⁺, 463 (M + H - C₃H₇CO₂H)⁺, 455 (M + H - HOAC - 2H₂O)⁺, 445 (M + H - C₃H₇CO₂H - H₂O)⁺, 395 (M + H - 2HOAC - 2H₂O)⁺, 385 (M + H - C₃H₇CO₂H - HOAC - H₂O)⁺, 325 (M + H - C₃H₇CO₂H - 2HOAC - H₂O)⁺, and 307 (M + H - C₃H₇CO₂H - 2HOAC - 2H₂O)⁺, suggesting the presence of a butyryloxy, two acetoxy, and two hydroxyl groups in 1. From the ¹³C NMR spectral data (Table 1), a trisubstituted and a

disubstituted double bonds were deduced from the signals of four carbons resonating at δ 147.7 (s), 141.8 (d), 122.1 (d) and 120.4 (d). An epoxyl group was confirmed from the signals of two quaternary oxygen-bearing carbons at δ 70.1 (s) and 62.4 (s), and from the chemical shift of the tertiary methyl protons, H₃-18 (δ 1.61, 3H, s). In the ¹³C spectrum of **1**, four carbonyl resonances appeared at δ 172.2 (s), 171.1 (s), 170.2 (s), and 169.3 (s), and supported the presence of a γ -lactone and three additional esters in 1. Two of the esters were identified as acetates by the presence of methyl resonances in the ¹H NMR spectrum at δ 2.23 (3H, s) and 2.10 (3H, s). The other ester was found to be an *n*-butyryloxy group based on NMR studies, including an ¹H-¹H COSY spectrum (Figure 1), which revealed seven contiguous protons (δ 2.28, 2H, t, J = 7.5 Hz; 1.65, 2H, m; 0.96, 3H, t, J = 7.5 Hz). The carbon signal at δ 172.2 (s) revealed correlation with the signals of the methylene protons resonating at δ 2.28 and 1.65 in the HMBC spectrum and was consequently assigned as the carbonyl carbon of the *n*-butyrate (Figure 1). From the $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **1**, it was possible to establish the proton sequences of H-2/H₂-3 and H₂-3/H-4; H₃-16/H-6; H-6/H-7; H-9/H-10; and H-12/H-13 and H-13/H-14. Furthermore, the methyl groups attached at C-5 and C-11 were confirmed by the HMBC correlations between H₃-16/C-4, C-5, C-6; and H₃-20/C-10, C-11, C-12. The ring-junctured C-15 methyl group was positioned at C-1 from the HMBC correlations between H₃-15/C-1, C-2, C-10, C-14. The *n*-butyryloxy group positioned at C-12 was confirmed from the connectivity between H-12 (δ 4.79) and carbonyl carbon (δ 172.2) of the *n*-butyryloxy group. In addition, the HMBC correlations also revealed that two acetates should attach at C-2 and C-9, respectively. On the basis of above analyses, two hydroxyl groups have to be positioned at C-4 and C-11, respectively. These data, together with the HMBC correlations between H₃-18/C-8, C-17, C-19, unambiguously established the molecular framework of 1.

OCH₂CH₂CH₃ **Figure 1.** 'H-'H COSY and HMBC Correlation for **1**.

Figure 2. Selective NOESY Correlations of 1.

The relative stereochemistry of **1** was elucidated from the vicinal ${}^{1}\text{H}{-}^{1}\text{H}$ coupling constants and by an NOESY experiment (Figure 2). The *cis* geometry of the C-13/C-14 double bond was indicated by a 10.5 Hz coupling constant between H-13 (δ 5.82, dd, J = 10.5, 5.5 Hz) and H-14 (δ 5.67, d, J = 10.5 Hz).

Moreover, strong NOE correlations were observed between H-10 and H-2, H-9, and H₃-20; while H₃-15 did not show NOE interactions with the above protons. Assuming the β -orientation of H₃-15, all of the protons of H-2, H-9, and H₃-20 should be positioned on the α face. One proton attaching at C-3 and resonating at δ 2.12 (m) was found to exhibit NOE correlations with H-2, and was assigned as H-3 α . H-4 exhibited NOE interactions with both H-2 and H-3 α , and was positioned on the α face. H-7 showed NOE correlations with H-3 β and H₃-18, confirming the β -orientations for both of H-7 and H₃-18. The *n*-butyryloxyl group attaching at C-12 was placed on the β face by the observed NOE correlations between H-12 and H₃-20. On the basis of the above results, the structure of **1**, including the relative configuration, was elucidated unambiguously.

Position	¹ H	¹³ C
1		45.5 (s)
2	4.49 (1H, d, J = 6.0 Hz)	77.8 (d)
$3\alpha/\beta$	2.12 (1H, m); 2.82 (1H, dd, J = 15.0, 12.0 Hz)	41.7 (t)
4	4.31 (1H, dd, J = 12.0, 5.0 Hz)	71.1 (d)
5		147.7 (s)
6	5.51 (1H, d, J = 10.0 Hz)	122.1 (d)
7	6.18 (1H, d, J = 10.0 Hz)	73.3 (d)
8		70.1 (s)
9	5.77 (1H, d, J = 4.5 Hz)	66.8 (d)
10	2.58 (1H, d, J = 4.5 Hz)	44.2 (d)
11		73.5 (s)
12	4.79 (1H, d, J = 5.5 Hz)	73.1 (d)
13	5.82 (1H, dd, J = 10.5, 5.5 Hz)	120.4 (d)
14	5.67 (1H, d, J = 10.5 Hz)	141.8 (d)
15	1.27 (3H, s)	18.1 (q)
16	2.07 (3H, s)	25.7 (q)
17		62.4 (s)
18	1.61 (3H, s)	9.7 (q)
19		171.1 (s)
20	1.34 (3H, s)	28.0 (q)
acetate methyls	2.23 (3H, s)	21.7 (q)
	2.10 (3H, s)	21.1 (q)
acetate carbonyls		170.2 (s)
-		169.3 (s)
<i>n</i> -butyrate		172.2 (s)
-	2.28 (2H, t, $J = 7.5$ Hz)	36.5 (t)
	1.65 (2H, m)	18.4 (t)
	0.96 (3H, t, <i>J</i> = 7.5 Hz)	13.7 (q)

 Table 1. ¹H and ¹³C NMR Spectral Data for Briaexcavatolide W (1)

EXPERIMENTAL

General Experimental Procedures. Melting point was determined using a Fisher-Johns melting point apparatus and were uncorrected. Optical rotation values were measured on a JASCO DIP-370 digital polarimeter. IR spectra were recorded on a JASCO FT/IR-5300 infrared spectrophotometer. FABMS were

obtained on a VG QUATTRO GC/MS spectrometer. HRFABMS were recorded on a JEOL JMS SX/SX 102A mass spectrometer. NMR spectra were recorded with a VARIAN UNITY INOVA 500 FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, in CDCl₃, using TMS as an internal standard. Silica gel (Merck, 230–400 mesh) was used during column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F_{254}) were used for analytical TLC. All solvents used were analytical grade.

Animal Material. The gorgonian *B. excavatum* was collected by hand using scuba in July 1995, off the Southern Taiwan coast at depths of 4–5 m, and was stored in a freezer until extraction. This organism was identified by comparison with descriptions.⁹ A voucher specimen was deposited in the Department of Marine Resources, National Sun Yat-Sen University (specimen no. KTSC-103).

Extraction and Isolation. The extraction scheme followed the standard procedures of our previous reports.^{1,2} The EtOAc extract of *B. excavatum* was separated by silica gel column chromatography using hexanes and hexanes–EtOAc mixtures of increasing polarity. Briaexcavatolide W (1) was eluted with hexanes–EtOAc (3:2).

Briaexcavatolide W (1): White powder (1.2 mg); mp 97.5–98.9 °C (from EtOAc); $[\alpha]_D^{27}$ -129° (c = 0.24, CHCl₃); IR (neat, CHCl₃): v_{max} 3463, 1734 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; FABMS m/z (rel. int.) 551 [1, (M + H)⁺], 533, 491, 473, 463, 455, 445, 395, 385, 325, 307; HRFABMS m/z 551.2484 (calcd for C₂₈H₃₈O₁₁ + H, 551.2493).

ACKNOWLEDGMENT

This research work was supported by a grant from the National Science Council (contract no. NSC 91-2113-M-110-009) awarded to J.-H. Sheu.

REFERENCES

- 1. J.-H. Sheu, P.-J. Sung, M.-C. Cheng, H.-Y. Liu, L.-S. Fang, C.-Y. Duh, and M. Y. Chiang, J. Nat. Prod., 1998, 61, 602.
- 2. P.-J. Sung, J.-H. Su, G.-H. Wang, S.-F. Lin, C.-Y. Duh, and J.-H. Sheu, J. Nat. Prod., 1999, 62, 457.
- J.-H. Sheu, P.-J. Sung, J.-H. Su, G.-H. Wang, C.-Y. Duh, Y.-C. Shen, M. Y. Chiang, and I.-T. Chen, J. Nat. Prod., 1999, 62, 1415.
- 4. J.-H. Sheu, P.-J. Sung, J.-H. Su, H.-Y. Liu, C.-Y. Duh, and M. Y. Chiang, *Tetrahedron*, 1999, 55, 14555.
- 5. P.-J. Sung, J.-H. Su, C.-Y. Duh, M. Y. Chiang, and J.-H. Sheu, J. Nat. Prod., 2001, 64, 318.
- 6. S.-L. Wu, P.-J. Sung, M. Y. Chiang, J.-Y. Wu, and J.-H. Sheu, J. Nat. Prod., 2001, 64, 1415.
- 7. S.-L. Wu, P.-J. Sung, J.-H. Su, and J.-H. Sheu, J. Nat. Prod., 2003, 66, 1252.
- 8. F. M. Bayer, Proc. Biol. Soc. Wash., 1981, 94, 902.
- 9. P.-J. Sung, J.-H. Sheu, and J.-P. Xu, Heterocycles, 2002, 57, 535.