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Abstract - An efficient and generalized photochemical methodology for the 

preparation of fluorinated quinazolin-4-ones is described. Depending on the 

starting substrate, quinazolin-4-ones bearing a perfluoroalkyl- or perfluoroaryl- 

substituent in position 2 or fluorine atoms on any positions of the benzo-fused 

moiety can easily be obtained. 5-Aryl-3-perfluoroalkylpentafluorophenyl- or 5-

polyfluoroaryl-3-phenyl(methyl)-1,2,4-oxadiazoles, respectively, can be 

considered as ideal precursors that can be transformed into the target quinazolin-

4-ones by irradiation in the presence of triethylamine (TEA) (at λ = 313 nm) or 

pyrene (at λ = 365 nm)  in dry methanol or acetonitrile as solvent. Some 

mechanistic considerations confirm the involvement of a photoinduced electron 

transfer process. 

  
INTRODUCTION 
 
Fluorinated heterocycles are interesting compounds widely used in medicinal, agricultural and polymer 

chemistry, and their synthesis represents a research area of growing interest.1 Although the direct 

introduction of fluorine or perfluoroalkyl groups into heterocyclic structures can be realized by using 

fluorinating or perfluoroalkylating reagents, a widely used approach to fluorinated heterocycles includes 

building-block strategies, which achieve the formation of the heterocyclic ring from fluorinated 

precursors.1 In this context, a promising strategy uses the photoinduced rearrangements of O-N bond 

containing azoles such as furazans and 1,2,4-oxadiazoles.2  In the field of photochemical strategies for the 

synthesis of heterocyclic compounds, an interesting reactivity of the 1,2,4-oxadiazole heterocycle is 

represented by the photochemical transformation of the 5-aryl-1,2,4-oxadiazole system into quinazolin-4-



ones derivatives.3,4 This process, which takes place under irradiation of the oxadiazoles in the presence of 

sensitizers or triethylamine (TEA), involves a photoinduced electron transfer between the excited 

sensitizer (S) (donor) and the ground state oxadiazole (OXA) (acceptor) or between the excited 

oxadiazole (acceptor) and the TEA (donor), followed by cyclization of the open-chain radical anion 

intermediate into the final quinazolin-4-one product (Scheme 1).  

 
Scheme 1 

21

N

O
N

R

hν
S or TEA

NH

N

O

R

S = Sensitizer            OXA = oxadiazole

hν
S

1 *

S
1 *

+ OXA e.t. OXA+S

S OXA hν OXA *

*OXA TEA+ + OXAe.t. TEA

2

43

e.t. = electron transfer     r.o. = ring opening       r.c. = ring closure     b.e.t. = back electron transfer

r.c./b.e.t.r.o. NH

N

O

R

+HN

O
N

R

Ar
OXA

 
 

In the frame of our research5,6 on the synthesis of fluorinated heterocycles, we became interested in how 

this photoinduced process could have been applied as a general methodology for the synthesis of 

fluorinated quinazolin-4-ones. Our interest towards this class of compounds comes from the fact that 

quinazolin-4-ones are associated with a wide range of pharmaceutical properties and are used as analgesic 

and antiinflammarory,7 antimicrobial,8 antiparkinson,9 and affect the central nervous system.10 They 

recently have been also tested as anticancer drugs,11 as anticonvulsant agents,12,13 and as neuropeptide Y 

receptor antagonists for the treatment of obesity and circulatory disorders.14 Moreover, all these 

properties can, in principle, be strongly affected by the presence of a fluorinated moiety. 

To better introduce this work, we needed to recall that a general synthesis of the quinazolin-4-one system 

exploits the use of anthranilic acid fused with aliphatic amines or nitriles, in one hand, or the use of        



o-aminobenzamides reacted with acylating reagents. For the synthesis of 2-perfluoroalkyl derivatives, 

examples of the last procedure are reported together with the use of 2-aminobenzonitrile (as a precursor) 

reacted with perfluoroalkanoyl chloride followed by cyclization in basic medium.15 As for our approach, 

we programmed the synthesis of quinazolin-4-ones bearing a fluorinated group (perfluoroalkyl- or 

perfluoroaryl-) at the C(2), starting from 5-aryl-1,2,4-oxadiazoles bearing the fluorinated group at the 

C(3). On the other hand, quinazolin-4-ones derivatives polyfluorosubstituted at the benzo-fused moiety 

can be obtained from the appropriate 5-polyfluoroaryl-1,2,4-oxadiazoles. The latter approach is an 

interesting because it allows the synthesis of fluorinated quinazolin-4-ones difficoult to obtain through the 

above cited conventional methodologies. 

 

RESULTS AND DISCUSSION 
 
To realize our project, we considered two series of 1,2,4-oxadiazoles: componds (5a-d) and compounds 

(5e-h) (Scheme 2). Referring to our previous results on the sensitized photorearrangement of 1,2,4-

oxadiazoles, we performed irradiations in the presence of TEA (at λ = 313 nm) or in the presence of 

pyrene (at λ = 365 nm). 
 

Scheme 2  

hν 

N

N

O

H

R'

W

X

Y

Z5a-h 6a-h

N

O
N

R'
W

X

Y

Z

H

 
a: W,X,Y,Z = H; R’ = CF3  e: W,X,Y,Z = F; R’ = Ph 

b: W,X,Y,Z = H; R’ = C3F7  f: W,X,Y = F; Z = H; R’ = Ph 

c: W,X,Y,Z = H; R’ = C7F15  g: W,X,Y,Z = F; R’ = Me 

d: W,X,Y,Z = H; R’ = C6F5  h: W,X,Y, = F; Z = H; R’ = Me 

 

3-Perfluoaroalkyloxadiazoles (5a-c) were prepared by an isoheterocyclic rearrangement reaction of the 

corresponding 5-perfluoroalkyl-3-phenyl-1,2,4-oxadiazoles with hydroxylamine in DMF.6 In turn, the 3-

pentafluorophenyl derivative (5d) was obtained by the conventional procedure exploiting the reaction of 

the pentafluorobenzamidoxime with benzoyl chloride.16 Similarly, the 5-polyfluorophenyloxadiazoles 

(5e-h) were prepared from acetamidoxime or benzamidoxime with the appropriate polyfluorobenzoyl 

chloride in anhydrous toluene at reflux.17  



All the photochemical reactions were performed on a preparative scale (~ 0.5 g of substrate) and were 

followed by chromatographic separation of the reaction mixture, where minor byproducts (< 5 %) were 

discarded. 
 

Irradiations at λ= 313 nm in the presence of TEA 
 
Considering our previous results on unfluorinated 5-aryl-1,2,4-oxadiazoles,3,4 we performed a series of 

irradiations of compounds (5a-h) at λ = 313 nm in the presence of TEA and using acetonitrile as solvent. 

Results are reported in Table 1. The use of methanol as irradiation solvent was avoided because, in the 

case of compounds (5a-c), irradiations in methanol/TEA resulted in decomposition of the intermediates, 

while for compounds (5d-g) the use of methanol causes the base–induced displacement of the 4-fluoro 

moiety of the aryl system with the nucleophilic solvent.5b The yields are acceptable for compounds     

(6d-h), however, compounds (6a-c) were obtained in low yields even after a longer irradiation. The lower 

reactivity shown by compound (5a-c) could be ascribed to the very low absorbance of the substrate at the 

irradiation wavelength: unfortunately, alternative irradiations at λ= 254 nm were not feasible due to 

competing reactions of the oxadiazole substrate and photodegradation of the just formed quinazolin-4-one. 

 

Irradiations at λ= 365 nm in the presence of pyrene 
 
We then decided to improve our procedure trying pyrene as a sensitizer with the advantage of irradiating 

at a wavelength where both the substrate and the final product do not absorb, thus minimizing 

photodecomposition processes. 

 
Table 1. - Yields of quinazolin-4-ones (6a-h) from irradiations of oxadiazoles (5a-h) 

Irradiation with TEAa    Irradiation with pyreneb 
Compd Yield (%) Recovered  Yield (%) Recovered 
             Starting Material             Starting Material 
___________________________________________________________________________________________ 

6a  5  68 c   75 d  5 

6b  5  70 c    40 d  25    

6c  16  80 c    45 d  35    

6d  21  69   56  25    

6e  45  40   35  51    

6f  35  57   35  53    

6g  55  20   37  51    

6h  60  10   41  54 

_____________________________________________________________________________________ 
a
 Irradiation time 2 h; 

b
 Irradiation time 5 h; 

c 
Irradiation time 4 h; 

d Irradiation performed in methanol. 



As shown in Table 1, irradiations of compounds (5a-h) in acetonitrile and in the presence of pyrene lead 

to the formation of quinazolin-4-ones (6a-h) in reasonable to good yields. [Actually, for compounds     

(5a-c) irradiations in methanol gave better results than those performed in acetonitrile where 5-10% 

yields were obtained toghether with substantial amount of unidentified decomposition byproducts]. On a 

separate experiment, the quinazolin-4-ones showed to be unstable under the irradiation conditions, for 

this reason we decided to stop the irradiation of the substrate before its complete conversion; 

chromatographic separation allowed to isolate the product and to recycle the unreacted starting material. 

It is noteworthy that this photochemical methodology allows an easy preparation of  5,6,7,8-tetrafluoro- 

and 5,6,7-trifluoroquinazolin-4-ones (6e-h) otherwise difficult to prepare by conventional procedure 

which should have employed polyfluoro-substituted 2-aminobenzamides (or nitriles), or polyfluoro-

substituted anthranilic acid. It is interesting that, in the case of the 5-pentafluorophenyloxadiazole (7), the 

irradiation resulted in the formation of the reduction product (9) only; the corresponding quinazolin-4-one 

(6d) is not observed, likely because of the uneasy displacement of the 2-fluoro substituent on the aromatic 

ring during the cyclization step of the radical anion intermediate (8) (Scheme 3). Finally, considering the 

double nature of the pyrene as an electron-transfer and/or energy transfer sensitizer, we analized the 

singlet energies (from fluorescence emission spectra) of oxadiazoles (5a-h); data shown in Table 2 clearly 

rule out any involvement of a singlet energy transfer process between the excited pyrene (ES = 322         

kJ mol-1)18 and the ground state oxadiazole (with energy values of the excited state all ranging between        

ES = 408-431 kJ mol-1) and this supports the hypothesis of a photoinduced electron transfer involved in 

the photoreaction mechanism and is in agreement with what previously reported for the unfluorinated 

analogues.3 
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Table 2. – UV absorption (λmax) and energy values  of the  
singlet excited state (Es) of compounds (5a-h) as determined  
from fluorescence emission spectra in methanol 
________________________________________________ 
Compound  λmax (nm)  Es (kJ/mol) 
________________________________________________ 
5a   253   416 

5b   254   419 

5c   254   420 

5d   252   410 

5e   243   411 

5f   246   408 

5g   243   409 

5h   247   431 

________________________________________________ 
 
 

Table 3. - Physical and analytical data for quinazolin-4-ones (6a-h).  
 

Compd Mp (°C) IR(nujol) 
ν (cm-1) 

1H NMR (TMS)  
δ (ppm) 

MS 
m/z (%) 

Molecular 
Formula 

Analysis 
Calcd (Found)

C/H/ N 
6a 245-248a      
6b 158-160b      
6c 178-180c      
6d 279-281d 3160, 1665 7.65-7.69 e (m, 1H, Ar), 7.77-7.80 (m, 

1H, Ar), 7.88-7.92 (m, 1H, Ar), 8.25-
8.29 (m, 1H, Ar), 

312 (M+, 100), 195 (15), 
124 (25), 117 (26), 90 (36), 
63 (55) 

C14H5N2OF5 53.86/1.61/8.97 
(53.80/1.50/8.80)

6e 312-313d 3172, 1680 7.63-7.82f (m, 3H. Ar), 8.13-8.34 (m, 
2H, Ar), 13.01 (br s, 1H, NH)g 

294 (M+, 34), 119 (32), 85 
(47), 71 (66), 57 (100) 

C14H6N2OF4 57.16/2.06/9.52 
(57.20/2.00/9.50)

6f 278-282d 3170, 1670 7.63-7.81f (m, 3H, Ar), 7.92-8.01 (m, 
1H, Ar) 8.13-8.41 (m, 2H, Ar), 12.90 
(br s, 1H, NH)g 

276 (M+, 100), 173 (72), 
144 (13), 104 (10), 77 (25) 

C14H7N2OF3 60.88/2.55/10.14
(60.70/2.40/10.10)

6g 238-242h 3160, 1690 2.42 f (s, 3H, Me), 12.69 (br s, 1H, 
NH)g 

232 (M+, 100), 214 (90), 
191 (25) 

C9H4N2OF4 46.57/1.74/12.07
(46.40/1.60/12.00)

6h 292-294d 3180, 1684 2.38 (s, 3H, Me) 7.52-7.60 (m, 1H, 
Ar) 12.52 (br s, 1H, NH)g 

214 (M+, 100), 173 (19), 
146 (15) 

C9H5N2OF3 50.48/2.35/13.08
(50.30/2.30/13.00)

a Lit., 15 mp 249-250 °C     e in acetone-d6. 
b Lit., 15 mp 160-161 °C     f in DMSO-d6. 
c Lit., 15 mp 181.5-182.5 °C     g exchangeable with D2O. 
d Crystallization solvent: Ethanol    h Crystallization solvent: Benzene. 

 

EXPERIMENTAL  
 
General: Melting points were determined on a REICHART-THERMOVAR hot-stage apparatus and are 

uncorrected. IR spectra (Nujol) were determined with a PERKIN ELMER 257 instrument; 1H-NMR 



spectra were recorded on a BRUKER AC 250 E spectrometer, and GC/MS determinations were carried 

out on a VARIAN STAR 3400 CX/SATURN 2000 system. Fluorescence emission spectra were 

determined in methanol using a JASCO FP-777WI spectrofluorimeter. Flash chromatography was 

performed by using silica gel (Merck, 0.040-0.063 mesh) and mixtures of ethyl acetate and light 

petroleum (fraction boiling in the range 40-60°C) in various ratios. Dry methanol and acetonitrile (from 

Romil Pure Chemicals) were used as received.  

Compounds (5a-c)6 and (5d)16 were prepared as reported; compounds (5e-h and 7) were prepared 

similarly to the reported procedure17 as described below. 
 

Synthesis of 5-polyfluoroaryl-1,2,4-oxadiazoles (5e-h, 7). General procedure. 

A mixture of benzamidoxime (for compound 5e,f and 7), or acetamidoxime (for compound 5g,h) (10 

mmol), pyridine (0.9 mL, 11 mmol) and the appropriate polyfluorobenzoyl chloride (11 mmol) was 

refluxed for 8 h in anhydrous toluene (100 mL). After removal of the solvent, the residue was treated with 

water and then extracted with EtOAc. The organic layers were dried over Na2SO4 and evaporated. 

Chromatography of the residue gave the oxadiazoles (5e-h and 7) (yields 60-80%). 
 
3-Phenyl-5-(2,3,4,5-tetrafluorophenyl)-1,2,4-oxadiazole (5e), had mp 150-151°C (ethanol), 1H NMR 

(CDCl3) δ 7.27-7.57 (m, 3H, Ar); 7.90-7.95 (m, 1H, Ar); 8.15-8.19 (m, 2H, Ar). MS m/z 294 (M+ , 100), 

177 (11), 119 (41). Anal. Calcd for C14H6N2OF4: C, 57.16; H, 2.06; N, 9.52. Found: C,57.10; H,2.00; N, 

9.40. 
 
3-Phenyl-5-(2,3,4-trifluorophenyl)-1,2,4-oxadiazole (5f), had mp 144-145°C (ethanol), 1H NMR 

(CDCl3) δ 7.14-7.27 (m, 1H, Ar); 7.50-7.56 (m, 3H, Ar); 7.96-8.05 (m, 1H, Ar); 8.15-8.19 (m, 2H, Ar). 

MS m/z 276 (M+ , 100), 119 (29), 64 (21).  Anal. Calcd for C14H7N2OF5: C, 57.16; H, 2.06; N, 9.52. 

Found: C,57.10; H,2.00; N, 9.40. 
 
3-Methyl-5-(2,3,4,5-tetrafluorophenyl)-1,2,4-oxadiazole (5g), had mp 150-151°C (ethanol), 1H NMR 

(CDCl3) δ 2.50 (s, 3H, Me); 7.72-7.77 (m, 1H, Ar);. MS m/z 232(M+ , 100), 175 (14), 58 (15). Anal. 

Calcd for C9H4N2OF4: C, 46.57; H, 1.74; N, 12.07. Found: C, 46.50; H,1.70; N, 12.00. 
 
3-Methyl-5-(2,3,4-trifluorophenyl)-1,2,4-oxadiazole (5h), had mp 72-73°C (light petroleum), 1H NMR 

(CDCl3) δ 2.51 (s, 3H, Me); 7.11-7.22 (m, 1H, Ar); 7.83-7.92 (m, 1H, Ar); MS m/z 214(M+ , 100), 157 

(12). Anal. Calcd for C9H5N2OF3: C, 50.48; H, 2.35; N, 13.08. Found: C, 50.50; H,2.30; N, 12.90. 
 

3-Phenyl-5-pentafluorophenyl-1,2,4-oxadiazole (7), had mp 132°C (ethanol); 1H-NMR (CDCl3) δ 7.53-

7.71 (m, 3H), 8.21-8.25 (m, 2H); MS m/z (312 M+ 100), 195 (25), 119 (81), 91 (46), 63 (54). 

C14H5N2OF5: C, 53.86; H, 1.61; N, 8.97. Found: C, 53.80; H,1.50; N, 8.90. 



General Procedure for Photochemical Reactions 

Photochemical reactions were carried out by using a Rayonet RPR-100 photoreactor fitted with 16 Hg 

lamps irradiating at λ= 313 nm (RPR 3000Å) and λ= 365 nm (RPR 3650Å) and equipped with a merry-

go-round apparatus. 

 

Irradiations at λ=313 nm in the presence of TEA. 

A solution of compounds (5a-h) (1.5 mmol) in anhydrous acetonitrile (150 ml), was partitioned into six 

pyrex tubes and purged with nitrogen (10 min). An excess of TEA (Molar ratio TEA/oxadiazole = 10/1) 

was added and all the samples were irradiated for 2 h (4 h for 5a-c). The solvent was evaporated to 

dryness under reduced pressure yielding a residue that was chromatographed with light petroleum/ethyl 

acetate at various ratios. Yields and spectroscopic data are respectively reported in Tables 1 and 3. 

 

Irradiations at λ=365 nm in the presence of Pyrene. 

A solution of compounds (5a-h) (1.5 mmol) in anhydrous methanol (for compounds 5a-c) or acetonitrile 

(for compounds 5d-h) (150 mL) containing pyrene as sensitizer (0.6 g, 3 mmol), was partitioned into six 

pyrex tubes, purged with nitrogen (10 min) and irradiated for 5 h. Yields and spectroscopic data are 

respectively reported in Tables 1 and 3 

 

Irradiations of compound 7 at λ=365 nm in the presence of pyrene. 

Irradiation of the compound (7) in acetonitrile in the presence of pyrene gave recovered starting material 

(50%) and N-pentafluorobenzoylbenzamidine (9) (20%). 

Compound (9) had mp 287-290 °C (ethanol), IR 3420, 3320, 3220, 1670 cm-1; 1H-NMR (DMSO-d6) δ 

7.55-7.72 (m, 3H), 7.90-8.15 (m, 2H), 9.93 (s, 1H), 10.30 (s, 1H); MS m/z (314 M+ 30), 195 (62),167 (66), 

147 (100), 117 (23), 104 ( 65), 77 (68), 63 (54). C14H7N2OF5: C, 53.52; H, 2.25; N, 8.92. Found: C, 

53.40; H,2.10; N, 8.80. 
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