## TWO NEW C<sub>19</sub>-DITERPENOID ALKALOIDS FROM ACONITUM NAGARUM VAR. LASIANDRUM

Hong Ji, Dong-Lin Chen, and Feng-Peng Wang\*

Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, No.17, Duan 3, Renmin Nan Road, Chengdu 610041, P. R. China (e-mail:wfp@wcums.edu.cn)

Abstract—Further investigation on the phytochemistry of the plant *Aconitum nagarum* var. *lasiandrum* led to isolate two  $C_{19}$ -diterpenoid alkaloids, francheline (1) and lasianine (3). Their structures were established on the basis of the spectral data.

The plant *Aconitum nagarum* var. *lasiandrum* (Ranuculaceae) growing in the Xuanwei district of Yunna province of China is used for folklore medicine to treat rheumatism and neuralgia.<sup>1</sup> The roots of *A. nagarum* var. *lasiandrum* has been reported to contain many diterpenoid alkaloids belong to the aconitine-type, e.g., aconitine, 3-deoxyaconitine, neoline, nagarine, aconifine;<sup>2</sup> 14-acetylneoline,<sup>3</sup> flavaconitine,<sup>4</sup> vilmorrianine A, karakoline, sachaconitine, talatizidine, isotalatizidine, chasmanine, and yunaconitine;<sup>5</sup> the lycoctonine- type, e.g., virescenine;<sup>4</sup> the denudatine-type, e.g., denudatine as the major alkaloid,<sup>4</sup> as well as the napelline-type, e.g., songorine<sup>3</sup> and songoramine.<sup>4</sup> Considering the contribution of this plant to both local folk medicine and chemotaxonomy,<sup>4</sup> our investigation on its roots led to isolate two additional new alkaloids, francheline (**1**) and lasianine (**3**). The present report describes the isolation and structural elucidation of these alkaloids.

The new base, francheline (1), was obtained as amorphous powder substance. Its molecular formula,  $C_{24}H_{37}NO_6$ , was established based on HR-ESI-MS and 2D-NMR. NMR and MS spectra showed that it was the franchetine-type  $C_{19}$ -diterpenoid alkaloid.<sup>6</sup> The NMR spectra showed the presence of an *N*-ethyl ( $\delta_H$  0.99, 3H, t, *J*=7.2 Hz; 2.42, 2.60, each 1H, m;  $\delta_C$  49.0 t, 13.0, q), and three methoxyls ( $\delta_H$  3.29, 3.31, 3.42, each 3H, s). Its <sup>1</sup>H- and <sup>13</sup>C-NMR spectra also showed the distinctive *N*,*O*-mixed acetal moiety ( $\delta_H$  4.32, br s, 1H;  $\delta_C$  92.5, d), and a trisubstituted double bond ( $\delta_H$  5.71, d, *J*=5.6 Hz, 1H;  $\delta_C$  128.7, d, 136.6, s). One-proton wide singlet signal at  $\delta_H$  4.04 was assigned to be H-14 $\beta$ , indicating the appearance of the hydroxyl group at C-14. Three methoxyl groups could be located at C-1, C-16, and C-18 due to the

<sup>1</sup>H-<sup>13</sup>C long-range correlations (HMBC) between 1-OCH<sub>3</sub> ( $\delta_{H}$  3.31, s) and C-1 ( $\delta_{C}$  86.4, d), 16-OCH<sub>3</sub> ( $\delta_{H}$  3.42, s) and C-16 ( $\delta_{C}$  85.8, d), 18-OCH<sub>3</sub> ( $\delta_{H}$  3.29, s) and C-18 ( $\delta_{C}$  79.1, t) in the HMBC of **1**. Comparison of the MS and NMR spectra of **1** with those of 14-debenzoylfranchetine (**2**)<sup>7</sup> showed that it had an additional hydroxyl group. The <sup>13</sup>C-NMR spectra of **1** and **2** are very similar except for C-9, C-10, C-12, C-13, and C-14 (Table 1), indicating that the additional hydroxyl group was located on C-13.<sup>8</sup> This assignment was further confirmed by the multibond correlations between the H-9 ( $\delta_{H}$  2.13, m), H-14 ( $\delta_{H}$  4.04, br s), H<sub>2</sub>-12 ( $\delta_{H}$  1.93, m, 2.00, m), H<sub>2</sub>-15 ( $\delta_{H}$  2.59, m), H-16 ( $\delta_{H}$  3.31, m) and the C-13 ( $\delta_{C}$  77.9, s) (Table 1) in the HMBC of **1**. The structure of francheline, thus, was assigned to be **1** by careful analysis of the <sup>1</sup>H- and <sup>13</sup>C-NMR and 2D-NMR (<sup>1</sup>H-<sup>1</sup>H COSY, HMQC, and HMBC) spectra.



Lasianine (3) was obtained as colorless needle crystals. The formula  $C_{25}H_{42}N_2O_8$  was confirmed by HR-ESI-MS and 2D-NMR spectral data. The NMR spectra of lasianine (3) exhibited an *N*-ethyl group  $[\delta_{\rm H} 1.11 (3H; t, J=7.2 \text{ Hz}), 2.47, 2.81 (each 1H, m); \delta_{\rm C} 48.4 t, 13.5 q]$ , four methoxyl groups ( $\delta_{\rm H} 3.26$ , 3.29, 3.37, 3.58, each 3H, s;  $\delta_{\rm C} 55.9$ , q, 59.1, q, 58.3, q, 61.7, q) and a primary amino group [an even number of molecular weight (MW=498) and the expanded formula:  $C_{19}H_{19}N$  (NCH<sub>2</sub>CH<sub>3</sub>×1, OCH<sub>3</sub>×4, OH×4, NH<sub>2</sub>×1)]. Its IR (3424 cm<sup>-1</sup>) and <sup>13</sup>C NMR spectra ( $\delta_{\rm C} 70.8$ , d, 77.6, s, 80.2, d, 82.4, d) also showed the presence of three secondary hydroxyl groups and one tertiary hydroxyl group. Three secondary hydroxyl groups were assigned to C-3, C-14, and C-15 based on the correlations between the C-3 ( $\delta_{\rm C} 70.8$ , d) and H-1 ( $\delta_{\rm H} 3.15$ , dd, J=6.4, 7.6 Hz), H<sub>2</sub>-2 ( $\delta_{\rm H} 1.98$ , m, 2.33, m), the C-14 ( $\delta_{\rm C} 80.2$ , d) and H-9 ( $\delta_{\rm H} 2.13$ , m), H-16 ( $\delta_{\rm H} 3.09$ , d, J=6.4 Hz), as well as the C-15 ( $\delta_{\rm C} 82.4$ , d), and H-7 ( $\delta_{\rm H} 2.15$ , m),

| No.                 | 1                                            |                 |                                                  | 2               |
|---------------------|----------------------------------------------|-----------------|--------------------------------------------------|-----------------|
|                     | $\delta_{\rm H} \left( J = {\rm Hz} \right)$ | $\delta_{ m C}$ | HMBC (H→C)                                       | $\delta_{ m C}$ |
| 1                   | 3.24 dd (10.8, 6.4)                          | 86.4 d          | C-2, C-10, C-11, C-17, 1-OCH <sub>3</sub>        | 86.6            |
| 2                   | 1.93 m ( <i>α</i> )                          | 24.3 t          | C-3, C-4, C-11                                   | 24.3            |
|                     | 2.48 m (β)                                   |                 | C-1, C-3                                         |                 |
| 3                   | 1.52 ddd (12, 4.4, 2.4)                      | 32.7 t          | C-2, C-4, C-5, C-19                              | 32.7            |
|                     | 1.77 ddd (13.6, 4.8, 2.0)                    |                 | C-1, C-2, C-4, C-5, C-18, C-19                   |                 |
| 4                   | —                                            | 37.2 s          | _                                                | 37.3            |
| 5                   | 2.21 s                                       | 47.3 d          | C-3, C-4, C-6, C-7, C-10, C-11, C-17, C-18, C-19 | 48.0            |
| 6                   | 4.39 d (6.0)                                 | 74.7 d          | C-4, C-5, C-7, C-8, C-11, C-17                   | 74.9            |
| 7                   | 5.71 d (5.6)                                 | 128.7 d         | C-5, C-6, C-9, C-15                              | 128.3           |
| 8                   | —                                            | 136.6 s         | _                                                | 137.4           |
| 9                   | 2.83 br s                                    | 45.5 d          | C-7, C-8, C-10, C-12, C-13, C-14, C-15           | 44.3            |
| 10                  | 2.42 m                                       | 46.3 d          | C-1, C-5, C-8, C-9, C-11, C-12, C-14, C-17       | 49.4            |
| 11                  | —                                            | 50.3 s          | _                                                | 50.3            |
| 12                  | 1.93 m (β)                                   | 38.7 t          | C-9, C-10, C-11, C-13, C-14, C-16                | 29.3            |
|                     | 2.00 m ( <i>α</i> )                          |                 | C-9, C-10, C-13, C-16                            |                 |
| 13                  | —                                            | 77.9 s          | _                                                | 40.3            |
| 14                  | 4.04 br s                                    | 82.4 d          | C-8, C-9, C-13, C-16                             | 77.4            |
| 15                  | 2.59 m (β)                                   | 38.9 t          | C-7, C-8, C-9, C-13, C-16                        | 38.6            |
|                     | 3.09 m ( <i>α</i> )                          |                 | C-7, C-8, C-16                                   |                 |
| 16                  | 3.31 m                                       | 85.8 d          | C-13, C-14, C-15, 16-OCH <sub>3</sub>            | 85.1            |
| 17                  | 4.32 br s                                    | 92.5 d          | C-1, C-5, C-6, C-10, C-11, C-19, C-21            | 92.4            |
| 18                  | 3.06 ABq (9.2)                               | 79.1 t          | C-3, C-4, C-5, C-19, 18-OCH <sub>3</sub>         | 79.2            |
|                     | 3.16 ABq (9.2)                               |                 | C-3, C-4, C-5, C-19, 18-OCH <sub>3</sub>         |                 |
| 19                  | 2.04 ABq (11.0) (β)                          | 52.0 d          | C-3, C-4, C-5, C-17, C-18, C-21                  | 52.0            |
|                     | 2.44 ABq (11.0) (α)                          |                 | C-3, C-4, C-5, C-17                              |                 |
| 21                  | 2.42 m                                       | 49.0 t          | C-17, C-19, C-22                                 | 49.0            |
|                     | 2.60 m                                       |                 | C-17, C-19, C-22                                 |                 |
| 22                  | 0.99 t (7.2)                                 | 13.0 q          | C-21                                             | 13.1            |
| 1-OCH <sub>3</sub>  | 3.31 s                                       | 57.1 q          | C-1                                              | 57.1            |
| 16-OCH <sub>3</sub> | 3.42 s                                       | 57.7 q          | C-16                                             | 56.1            |
| 18-OCH <sub>3</sub> | 3.29 s                                       | 59.4 q          | C-18                                             | 59.3            |

**Table 1**NMR spectral data of francheline (1) (400 MHz for  ${}^{1}$ H, 100 MHz for  ${}^{13}$ C, CDCl<sub>3</sub>)

| No.                 | 3                                            |                 |                                                  | <b>4</b> <sup>9</sup> |
|---------------------|----------------------------------------------|-----------------|--------------------------------------------------|-----------------------|
|                     | $\delta_{\rm H} \left( J = {\rm Hz} \right)$ | $\delta_{ m C}$ | HMBC (H→C)                                       | $\delta_{ m C}$       |
| 1                   | 3.15 dd (7.6, 6.4)                           | 83.9 d          | C-3, C-10, C-11, C-17, 1-OCH <sub>3</sub>        | 84.1                  |
| 2                   | 1.98 m ( <i>α</i> )                          | 34.9 t          | C-1, C-3, C-4, C-11                              | 35.5                  |
|                     | 2.33 m (β)                                   |                 | C-1, C-3, C-4, C-11                              |                       |
| 3                   | 3.76 dd (9.6, 4.8)                           | 70.8 d          | C-2, C-4                                         | 71.9                  |
| 4                   | _                                            | 44.4 s          | —                                                | 43.2                  |
| 5                   | 2.06 br s                                    | 49.7 d          | C-6, C-11, C-17, C-19                            | 49.0                  |
| 6                   | 4.13 d (6.4)                                 | 85.3 d          | C-4, C-5, C-8, C-17, 6-OCH <sub>3</sub>          | 83.0                  |
| 7                   | 2.15 m                                       | 46.7 d          | C-5, C-11, C-15, C-17                            | 51.3                  |
| 8                   | —                                            | 61.0 s          | —                                                | 76.4                  |
| 9                   | 2.13 m                                       | 50.3 d          | C-8, C-10, C-12, C-13, C-14, C-15                | 50.1                  |
| 10                  | 1.94 m                                       | 43.2 d          | C-5, C-8, C-9, C-11, C-12, C-13, C-17            | 42.4                  |
| 11                  | —                                            | 51.4 s          | —                                                | 50.5                  |
| 12                  | 1.92 m (β)                                   | 38.3 t          | C-9, C-10, C-13, C-16                            | 37.4                  |
|                     | 2.51 m ( <i>α</i> )                          |                 | —                                                |                       |
| 13                  | —                                            | 77.6 s          | —                                                | 78.8                  |
| 14                  | 3.81 d (5.2)                                 | 80.2 d          | C-8, C-9, C-13, C-16                             | 80.6                  |
| 15                  | 4.23 d (6.4)                                 | 82.4 d          | C-8, C-9, C-16                                   | 78.5                  |
| 16                  | 3.09 d (6.4)                                 | 93.4 d          | C-8, C-12, C-13, C-14, C-15, 16-OCH <sub>3</sub> | 91.8                  |
| 17                  | 3.06 s                                       | 62.8 d          | C-5, C-6, C-7, C-8, C-10, C-11, C-19, C-21       | 60.8                  |
| 18                  | 3.35 ABq (8.4)                               | 75.6 t          | C-3, C-4, C-5, 18-OCH <sub>3</sub>               | 77.4                  |
|                     | 3.70 ABq (8.4)                               |                 | C-3, C-4, C-5, 18-OCH <sub>3</sub>               |                       |
| 19                  | 2.44 (hidden) (β)                            | 50.0 t          | C-3                                              | 48.3                  |
|                     | 2.78 (hidden) ( <i>α</i> )                   |                 | C-4, C-21                                        |                       |
| 21                  | 2.47 m                                       | 48.4 t          | C-22                                             | 46.2                  |
|                     | 2.81 m                                       |                 | C-17, C-22                                       |                       |
| 22                  | 1.11 t (7.2)                                 | 13.5 q          | C-21                                             | 13.4                  |
| 1-OCH <sub>3</sub>  | 3.26 s                                       | 55.9 q          | C-1                                              | 55.7                  |
| 6-OCH <sub>3</sub>  | 3.37 s                                       | 58.3 q          | C-6                                              | 58.0                  |
| 16-OCH <sub>3</sub> | 3.58 s                                       | 61.7 q          | C-16                                             | 61.9                  |
| 18-OCH <sub>3</sub> | 3.29 s                                       | 59.1 q          | C-18                                             | 59.1                  |

**Table 2**NMR spectral data of lasianine (3) (400 MHz for  ${}^{1}$ H, 100 MHz for  ${}^{13}$ C, CD<sub>3</sub>OD)

H-9, H-16, in the HMBC of 3. The remained hydroxyl group in 3 could be located at C-13 by showing

the correlations between C-13 ( $\delta_{C}$  77.6, s) and H-9, H-10 ( $\delta_{H}$  1.94, m), H-12 ( $\delta_{H}$  1.92, m), H-14 ( $\delta_{H}$  3.81, d, J=5.2 Hz), H-16. The four methoxyl groups in 3 were put on C-1, C-6, C-16, and C-18 due to the correlations between the 1-OCH<sub>3</sub> ( $\delta_{\rm H}$  3.26, s) and C-1 ( $\delta_{\rm C}$  83.9, d), the 6-OCH<sub>3</sub> ( $\delta_{\rm H}$  3.37, s) and C-6 ( $\delta_{\rm C}$ 85.3, d), the 16-OCH<sub>3</sub> ( $\delta_{\rm H}$  3.58, s) and C-16 ( $\delta_{\rm C}$  93.4, d), the 18-OCH<sub>3</sub> ( $\delta_{\rm H}$  3.29, s) and C-18 ( $\delta_{\rm C}$  75.6, t) in the HMBC of 3. The  ${}^{13}$ C-NMR spectra (Table 2) of lasianine (3) and aconine (4)<sup>9</sup> are similar, except for C-7, C-8, C-15, C-16, C-17, C-18, and C-21 which are caused by replacing the hydroxyl group with the amino group at C-8. This implied the presence of an amino group at C-8 in 3. Apparently, Dreiding model observation and very rigid framework of lasianine ruled out another possibility of  $\alpha$ -configuration of 8-NH<sub>2</sub> group. Structure of lasianine was therefore established as (3). All the <sup>1</sup>H- and <sup>13</sup>C-NMR spectral data obtained for lasianine (Table 2) supported structure (3). Lasianine (3) is the third natural aconitine-type C<sub>19</sub>-diterpenoid alkaloid possessing the 8-amino group at C-8. Mild treatments of the extracts and column fractions throughout the isolation products, TLC comparison (silica gel GF<sub>254</sub>, CHCl<sub>3</sub>-MeOH=9:1) of the crude ethanol extracts with the authentic sample (lasianine, 3) as well as refluxing aconitine with a mixture of dioxane-concentrated ammonia for 4 h have precluded the possibility of substitution reactions to occur at C-8 in 4. In fact, our studies showed that refluxing the aconitine-type alkaloids having the 8-OAc group, as yunaconitine (5), with MeOH, EtOH, dioxane, and diglyme-  $H_2O^{11,12}$  afforded the corresponding 8-OR-containing compounds 6, 7, 8 respectively. Mechanically, these compounds were formed by a process as showed in Fingure 1. First, Grob fragmentation of 5 produced the intermediate A, and then, the nucleophilic species, such as OCH<sub>3</sub>, OEt, OH, etc., atlackes on C-8 in A to give compounds 6, 7, and 8 respectively. Clearly, in our case (NH<sub>4</sub>OH-ion exchage resin), there has a  $NH_4^+$  instead of a :NH<sub>2</sub>, thus, the lasianine (3) can not be artificially produced.



## **EXPERIMENTAL**

**General Experimental procedure.** Optical rotations were recorded on a Perkin-Elmer 341 polarimenter. IR spectra were obtained on a Nicolet FT-IR 200 SXY spectrophotometer. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were measured on a Varian Unity INOVA 400/45 NMR spectrometer in CDCl<sub>3</sub> or CD<sub>3</sub>OD with TMS as the internal standard. EI-MS and HR-ESI-MS were measured from a VG Auto spec 3000 or Finnegan MAT 90 instrument. Silica gel GH<sub>254</sub> and H (Qindao Sea Chemical Factory, China) were used for TLC, and column chromatography, respectively. Spots on TLC were detected with modified Dragendorff's reagent. A polyvinyl sulfonic ion exchange resin (H-form, cross linking  $1 \times 1$ , Chemical Factory of Nankai University, China) was used for the extraction of total alkaloids.

**Plant material.** The *Aconitum* Stapf *nagarum* var. *lasiandrum* was collected in Xuanwei district, Yunna province, China and authenticated by Professor W. T. Wang of the Beijing Institute of Botany, Chinese Academy of Sciences, where a voucher specimen (No. 2009216) has been deposited.

**Extraction and Isolation.** According to method reported in the literature,<sup>13</sup> powdered roots (16.3 kg) of *Aconitum nagarum*. var. *lasiandrum* were percolated with 0.05 mol HCl (250 L). Wet resin (dry weight 1.8 kg) was added to the percolate, followed by repeated washing on a suction filter with deionized H<sub>2</sub>O. The air-dried resin was then alkalized with 10% aqueous NH<sub>4</sub>OH (45 L) and continuously extracted with

methanol. Evaporation on reduced pressure gave the residue (130 g), to which 5% HCl (2.6 L) added, and filtrated, basified with concentrated.  $NH_4OH$  to pH 10. The alkaline solution was extracted sequentially with CHCl<sub>3</sub> (4 L), n-BuOH (3 L) to give the crude alkaloids I (38 g) and II (80 g), respectively.

The crude alkaloid II (80 g) was chromatographed on a silica gel H column eluting with CHCl<sub>3</sub>-MeOH (30:1-1:2) to afford six parts, A (10.3 g), B (10.1 g), C (12.7 g), D (19.8 g), E (24. 8 g), and F (8.2 g). Part A was subjected to silica gel H column chromatographed eluting with petroleum-acetone-diethylamine (85:15:1-60:40:1) to give fractions A-1 (457 mg), A-2 (980 mg), A-3 (2.98 g), A-4 (1.70 g), and A-5 (505 mg). Fraction A-3 was chromatographed repeatedly on a silica gel H eluting with petroleum-acetone-diethylamine (85:15:1-50:50:1) to yield francheline (1) (45 mg). Fraction E was chromatographed on a silica gel column eluting with petroleum-acetone-diethylamine (40:60:1-20:80:1) to afford fractions E-1 (2.2 g), E-2 (3.5 g), E-3 (7.0 g), and E-4 (6.5 g). E-3 was subjected to silica gel column chromatography eluting with CHCl<sub>3</sub>-MeOH-NH<sub>4</sub>OH (93:7:0.5-40:60:0.5) to yield fractions E-3-1 (700 mg), E-3-2 (466 mg), E-3-3 (3.23 g), E-3-4 (1.12 g), and E-3-5 (1.35 mg). E-3-4 was purified by HPLC (RP-C18, 10  $\mu$ m, 1.0  $\times$  20 cm; mobile phase: CH<sub>3</sub>OH-H<sub>2</sub>O-NH<sub>4</sub>OH (5:3:1-6:1:1), Waters 2410 refraction detector) provided lasianine (**3**) (27 mg).

**Franechline (1).** White amorphous powder, mp 86~88°C;  $[\alpha]_D^{20} - 146.8^\circ$  (c 0.5, CHCl<sub>3</sub>). IR (KBr)cm<sup>-1</sup>: 3427, 2926, 1661, 1455; <sup>1</sup>H- and <sup>13</sup>C-NMR: see Table 1; EI-MS *m*/*z* (%): 436 (M<sup>+</sup>+1) (100); 404 (M-OCH<sub>3</sub>) (9); 360 (34); HR-ESI-MS *m*/*z*: 436.2696 [M+H]<sup>+</sup>, calcd for C<sub>24</sub>H<sub>38</sub>NO<sub>6</sub>, 436.2699.

**Lasianine (3).** Colorless needle crystals, mp 134~136°C;  $[\alpha]_{D}^{20}$  + 12.9° (c 0.4, MeOH). IR (KBr)cm<sup>-1</sup>: 3424, 2931, 1632, 1454, 1099; <sup>1</sup>H-and <sup>13</sup>C-NMR: see Table 2; EI-MS *m*/*z* (%): 499 [M+H]<sup>+</sup> (100); 467 (M-OCH<sub>3</sub>) (9); 449 (14); 417 (13); HR-ESI-MS *m*/*z*: 499.3032 [M+H]<sup>+</sup>, calcd. for C<sub>25</sub>H<sub>43</sub>N<sub>2</sub>O<sub>8</sub>, 499.3019.

## ACKMEWLEDGMENT

This work was supported by the Doctoral Foundation of the Ministry of Education, P. R. China (2002-2004).

## REFERENRES

1. Institute of Botany, Chinese Academy of Sciences & Institute of Materia Medica, Chinese Academy of Medicinal Sciences, in "Flora Reipablicae Popularis Sinicae," Vol. 27, Science Press, Beijing, 1979,

p. 182.

- 2. H. C. Wang, Y. L. Gao, R. S. Xu, and R. H. Zhu, Acta Chim. Sinica, 1981, 39, 869.
- 3. H. C. Wang, D. Z. Zhu, Z. Y. Zhao, and R. H. Zhu, Acta Chim. Sinica, 1980, 38, 475.
- 4. S. Y. Chen, S. H. Li, and X. J. Hao, Acta Bot. Sinica, 1986, 28, 86.
- 5. J. Y. Dong and L. Li, J. Plant Resour. & Environ., 2000, 9, 1.
- 6. F. P. Wang, Z. B. Li, X. P. Dai, and C. S. Peng, *Phytochemistry*, 1997, 45, 1539.
- 7. C. S. Peng, X. P. Dai, D. L. Chen, and F. P. Wang, Nat Prod. R&D, 1999, 11 (3), 23.
- 8. F. P. Wang, Chin. J. Org. Chem., 1982, 3, 161.
- 9. S. W. Pelletier, N. V. Mody, and R. S. Sawhney, Can. J. Chem., 1979, 57, 1652.
- 10. unpublished data.
- 11. F. P. Wang, J. S. Yang, Q. H. Chen, L. Yu, and B. G. Li, Chem. Pharm. Bull., 2000, 48, 1912.
- 12. Q. H. Chen and F. P. Wang, J. Asian Nat. Prod. Res., 2003, 5, 43.
- 13. Q. C. Fang and Z. M. Hou, Acta Pharm. Sinica, 1996, 13, 577.