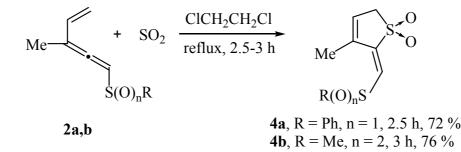
ALKATRIENYL SULFOXIDES AND SULFONES. PART VI. CHELETROPIC ADDITION OF SULFUR DIOXIDE TO 1- AND 3-VINYLALLENYL SULFOXIDES AND SULFONES^{1,2}

Valerij Ch. Christov* and Ivaylo K. Ivanov

Department of Chemistry, University of Shumen, BG-9700 Shumen, Bulgaria E-Mail: vchristo@shu-bg.net

Abstract – The reaction of 1- and 3-vinylallenyl sulfoxides and sulfones with sulfur dioxide in 1,2-dichloroethane at reflux proceeds as a cheletropic addition leading to the formation of 2-isopropylidene-3-sulfinyl(sulfonyl)- or 2-sulfinyl-(sulfonyl)methylidene-substituted 2,5-dihydrothiophene 1,1-dioxides in very good yields.

Conjugated dienes are known to undergo cheletropic additions³ with sulfur dioxide to generate the corresponding 2,5-dihydrothiophene 1,1-dioxides (sulfolenes),⁴ or to generate polymers (polysulfones).⁵ At low temperature and in the presence of a protic or Lewis acid catalyst, simple acyclic alkyl-substituted 1,3-dienes that can adopt the *s-cis* conformation add reversibly to SO₂ by hetero-Diels-Alder additions to generate the corresponding 3,6-dihydro-1,2-oxathiine 2-oxides (sultines).^{6,7} The latter are unstable above -50 °C and undergo fast cycloreversion to liberate the starting 1,3-dienes and SO₂, which can then undergo the expected cheletropic addition at higher temperature. The competition between the hetero-Diels-Alder and the cheletropic additions of sulfur dioxide strongly depends on the nature of the substituents of the 1,3-dienes.⁸ Reactions of sulfur dioxide with conjugated diallenes take place at room temperature with formation of 2,5-bis(alkylidene)-2,5-dihydrothiophene 1,1-dioxides.⁹ Reactions of sulfur dioxide with vinylallenes, in particular, with vinylallenyl sulfoxides and sulfones have not been investigated to date.


During our previous works concerning electrophile-induced cyclization reactions of alkatrienyl sulfoxides and sulfones,^{10a-10d} we were able to show that 1- and 3-vinylallenyl sulfoxides and sulfones are readily accessible by [2,3] sigmatropic rearrangement of the corresponding 1- and 3-vinylpropargylic sufenates and sulfinates, formed in the reactions of the corresponding α -alkynols with sulfenyl or sulfinyl chlorides.^{10a-10d} In view of the advantages of vinylallenes as diene component in Diels-Alder reaction,^{10e} we therefore initiated a study of their use in cheletropic addition. The results of this work are presented here.

We initiated this study with the cheletropic addition of sulfur dioxide to 5-methyl-3-(phenylsulfinyl)hexa-1,3,4-triene (**1a**). The reaction conditions have been optimized in order to obtain better yields. The reaction in benzene, toluene, xylene, CCl_4 , CH_2Cl_2 , and $CHCl_3$ as a solvent resulted in low product yields and mainly recovered the starting material or polymeric residue. According to results in the screening solvents, 1,2-dichloroethane was found to be the best. Thus, optimization of the reaction conditions was conducted in $ClCH_2CH_2Cl$ and finally it was found that when sulfur dioxide was bubbled through a stirred boiling solution of the vinylallene (**1a**), fast darkening of the reaction mixture took place and after 3.5 h no characteristic band for the allenic bond in the IR spectrum of the mixture was observed. The resulting 2,5-dihydrothiophene 1,1-dioxide (sulfolene)(**3a**) was isolated by preparative TLC in 78% yield. Note that at room temperature the two reactants still interacted (much more slowly) with the formation of the compound (**3a**).

To establish the generality of this method, the cheletropic addition of SO_2 to the corresponding 1-vinylallenyl sulfone (**1b**) was examined under the optimized conditions and 3-(methylsulfonyl)-2,5-dihydrothiophene 1,1-dioxide (**4b**) was isolated in 79% yield after bubbling with SO_2 and heating at reflux for 4 h (Scheme 1).

Scheme 1

Interestingly, this protocol can also be successfully applied to the corresponding cheletropic addition of SO_2 to the 3-vinylallenic starting materials. We have carried out the reaction of the 1-phenylsulfinyl- and 1-methylsulfonyl-substituted penta-1,2,4-trienes (**2a**) and (**2b**) with sulfur dioxide leading to (*E*)-2-phenylsulfinyl- or (*E*)-2-methylsulfonyl-methylidene-2,5-dihydrothiophene 1,1-dioxides (**4a**) and (**4b**) (Scheme 2). Although it was anticipated that the olefinic proton of the (*E*)-isomer would be observed

downfield from the corresponding proton of the (*Z*)-isomer,¹³ with the chemical shift value¹² ($\delta = 7.32$ ppm for **4a** and 7.35 ppm for **4b**) alone we cannot determine whether dihydrothiophenes **4** is the (*E*)- or (*Z*)-isomer. On the other hand, in the ¹³C NMR spectra the chemical shift value of the two carbon atoms of the exocyclic double bond of the (*E*)-isomer would be observed upfield from the corresponding carbons of the (*Z*)-isomer.¹³ The obtained chemical shift value¹² for these carbons ($\delta = 136.2$ and 155.5 ppm for **4a** and 137.3 and 149.2 ppm for **4b**) suggests that the olefinic proton is situated *cis* to the sulfonic group in the ring. Thus, the structure of **4** was determined to be (*E*).

Reaction times longer than 4 hours decrease the yields due to polymerization of the starting vinylallenic materials or decomposition of the products. The only product obtained in each case was the 2,5-dihydrothiophene 1,1-dioxides (**3a,b**) and (**4a,b**) – in all cases no traces of the corresponding 3,6-dihydro-1,2-oxathiine 2-oxides (sultines) as products of the hetero-Diels-Alder reaction or any other products were detected. Structural assignments of the new dihydrothiophenic compounds (**3**) and (**4**) are based on ¹H and ¹³C NMR spectral data, IR spectra as well as elemental analyses.^{11,12} In particular, on one hand, the protons on C-5 of the ring in ¹H NMR spectra resonate at $\delta = 3.79$ -4.18 ppm as two double doublets and the proton on C-4 appears as triplet, thus accounting for the depicted regiochemistry of the cycloaddition. On the other hand, the ¹³C NMR spectra of these products (**3**) and (**4**) also showed a complex signals of the sp² carbons ($\delta = 120.7$ -155.5 ppm) and the sp³ C-5 ($\delta = 47.2$ -48.4 ppm), characteristic for newly-formed 2,5-dihydrothiophenes.

In conclusion, we have developed an efficient synthesis of 2- and 3-sulfinyl(sulfonyl)-substituted 2,5-dihydrothiophene 1,1-dioxides by cheletropic addition of sulfur dioxide to 1- and 3-vinylallenyl sulfoxides and sulfones. This study reveals the potential of the cycloaddition reactions of vinylallenyl sulfoxides and sulfones to selectively construct exocyclic double bond on six-² or five-membered rings. Further expansion and applications of this methodology are in progress and will be reported in due course.

ACKNOWLEDGEMENTS

Support from the Research Fund of the University of Shumen (Projects No. 12 / 2003 and No. 16 / 2004) is acknowledged. The first author would like to thank two anonymous referees for their useful comments.

REFERENCES AND NOTES

- 1. Dedicated to Professor Dr. Toru Minami of Kyushu Institute of Technology, Kitakyushu, Japan on the occasion of his 65th birthday.
- 2. For Part V, see: V. Ch. Christov and I. K. Ivanov, Synth. Commun., 2004, 34, issue 21, in press.
- (a) R. B. Woodward and R. Hoffmann, 'The Conservation of Orbital Symmetry', Academic Press, Inc., New York, 1970; (b) S. D. Turk and R. L. Coob, in '1,4-Cycloaddition Reactions', ed. by J. Hamer, Academic Press, Inc., New York, 1967, p.13; (c) M. J. S. Dewar, 1984, *J. Am. Chem. Soc.*, 1984, **106**, 209 and proceeding papers.
- 4. (a) G. De Bruin, Konikl. Ned. Akad. Wetenschop. Proc., 1914, 17, 585; (b) E. Eigenberger, J. Prakt.

Chem., 1930, **127**, 307; (c) H. J. Backer and J. Strating, *Rec. Trav. Chim. Pays-Bas*, 1934, **53**, 523; (d) E. de R. van Zuydewijn and J. Boeseken, *Rec. Trav. Chim. Pays-Bas*, 1934, **53**, 673; (e) H. Staudinger and B. Ritzenthaler, *Ber.*, 1935, **68**, 455; (f) H. J. Backer and J. Strating, *Rec. Trav. Chim. Pays-Bas*, 1943, **62**, 815.

- 5. See for example: D. Masilamani, E. H. Manahan, J. Vitrone, and M. M. Rogic, *J. Org. Chem.*, 1983, **48**, 4918.
- For the hetero-Diels-Alder addition of sulfur dioxide to 1,3-dienes, see: (a) B. Deguin and P. Vogel, *J. Am. Chem. Soc.*, 1992, **114**, 9210; (b) B. Deguin and P.Vogel, *Tetrahedron Lett.*, 1993, **34**, 6269; (c) F. Monnat, P. Vogel, R. Meana, and J. A. Sordo, *Angew. Chem., Int. Ed.*, 2003, **42**, 3924; (d) E. Roversi, R. Scoppelliti, E. Solari, R. Estoppey, P. Vogel, P. Brana, B. Mendendez, and J. A. Sordo, *Chem. Eur. J.*, 2002, **8**, 1336; (e) D. Markovic, E. Roversi, R. Scoppelliti, P. Vogel, and R. Meana, *Chem. Eur. J.*, 2003, **9**, 4911.
- For the competition between hetero-Diels-Alder addition and cheletropic addition of sulfur dioxide to 1,3-dienes, see: (a) F. Monnat, P. Vogel, and J. A. Sordo, *Helv. Chim. Acta*, 2002, **85**, 712; (b) E. Roversi, F. Monnat, P. Vogel, K. Schenk, and P. Roversi, *Helv. Chim. Acta*, 2002, **85**, 733; (c) E. Roversi and P. Vogel, *Helv. Chim. Acta*, 2002, **85**, 761.
- For mechanisms of the hetero-Diels-Alder and cheletropic additions of sulfur dioxide to 1,3-dienes, see: (a) D. Suarez, E. Iglesias, T. L. Sordo, and J. A. Sordo, *J. Phys. Org. Chem.*, 1996, 9, 17; (b) F. Monnat, P. Vogel, V. M. Rayon, and J. A. Sordo, *J. Org. Chem.*, 2002, 67, 1882.
- (a) K. Kleveland and L. Skattebol, J. Chem. Soc., Chem. Commun., 1973, 432; (b) K. Kleveland and L. Skattebol, Acta Chem. Scand., 1975, B 29, 827.
- Our previous reports on alkatrienyl sulfoxides and sulfones, see: (a) Part I, see: V. Ch. Christov and I. K. Ivanov, *Phosphorus, Sulfur, Silicon*, 2002, **177**, 2445; (b) Part II, see: V. Ch. Christov and I. K. Ivanov, *Sulfur Lett.*, 2002, **25**, 191; (c) Part III, see: V. Ch. Christov and I. K. Ivanov, *Heterocyclic Commun.*, 2003, **9**, 629. (d) For Part IV, see: V. Ch. Christov and I. K. Ivanov, *Phosphorus, Sulfur, Silicon*, 2004, in press; (e) See: Ref.²
- (a) 3-Phenylsulfinyl-2-isopropylidene-2,5-dihydrothiophene 1,1-dioxide (3a): Yellow oil, 78 % yield. TLC: ethyl acetate : hexane = 1 : 1. Anal. Calcd for C₁₃H₁₄O₃S₂: C 55.29, H 5.00, S 22.71; Found, C 55.47, H 4.94, S 22.63. IR (film): 1046, 1143, 1288, 1599-1640. ¹H NMR (CDCl₃, 250 MHz): δ = 2.07 (s, 3H, Me_a), 2.21 (s, 3H, Me_b), 3.72, 3.87 (2xdd, ³J_{HH} 2.9 Hz, ²J_{HH} 12.0 Hz, 2H, CH₂), 7.2 (t, ³J_{HH} 2.9 Hz, 1H, =C-H), 7.53-8.21 (m, 5H, Ph). ¹³C NMR (CDCl₃, 50 MHz): δ = 18.4, 20.9, 47.3, 126.1, 129.5, 130.4, 136.2, 142.9, 145.8, 146.5, 153.3. (b) 3-Methylsulfonyl-2-isopropylidene-2,5-dihydrothiophene 1,1-dioxide (3b): Yellow oil, 79 % yield. TLC: ethyl acetate : heptane = 1 : 2. Anal. Calcd for C₈H₁₂O₄S₂: C 40.66, H 5.12, S 27.14; Found, C 40.61, H 5.03, S 26.98. IR (film): 1141, 1326, 1600-1648. ¹H NMR (CDCl₃, 250 MHz): δ = 2.02 (s, 3H, Me_a), 2.10 (s, 3H, Me_b), 3.07 (s, 3H, SO₂Me), 3.77, 3.98 (2xdd, ³J_{HH} 2.9 Hz, ²J_{HH} 12.1 Hz, 2H, CH₂), 7.23 (t, ³J_{HH} 2.9 Hz, 1H, =C-H).
- 12. (a) (E)-2-Phenylsulfinylmethylidene-3-methyl-2,5-dihydrothiophene 1,1-dioxide (4a): Yellow oil, 72 % yield. TLC: ethyl acetate : heptane = 1 : 1. Anal. Calcd for C₁₂H₁₂O₃S₂: C 53.71, H 4.51, S 23.90; Found, C 53.83, H 4.48, S 24.08. IR (film): 1038 (S=O), 1122 (v SO₂), 1306 (v SO₂), 1581-1684 (C=C). ¹H NMR (CDCl₃, 250 MHz): δ =2.24 (s, 3H, Me), 4.11, 4.24 (2xdd, ³J_{HH} 3.1 Hz, ²J_{HH} 12.7 Hz, 2H, CH₂), 6.18 (t, ³J_{HH} 3.1 Hz, 1H, =C⁴-H), 7.32 (s, 1H, =C-H), 7.51-8.45 (m, 5H, Ph). ¹³C NMR (CDCl₃, 50 MHz): δ = 21.5, 47.2, 120.7, 125.3, 127.6, 130.1, 136.2, 139.8, 150.0, 155.5. (b) (E)-2-Methylsulfonylmethylidene-3-methyl-2,5-dihydrothiophene 1,1-dioxide (4b): Yellow oil, 76 % yield. TLC: ethyl acetate : heptane = 5 : 1. Anal. Calcd for C₇H₁₀O₄S₂: C 37.82, C 4.53, S 28.85; Found, C 37.73, H 4.59, S 28.67. IR (film): 1126 (v SO₂), 1297 (v SO₂), 1590-1640 (C=C). ¹H NMR (CDCl₃, 250 MHz): δ = 2.27 (s, 3H, Me), 2.75 (s, 3H, SO₂Me), 3.93, 4.13 (2xdd, ³J_{HH} 3.2 Hz, ²J_{HH} 11.9 Hz, 2H, CH₂), 6.01 (t, ³J_{HH} 3.2 Hz, 1H, =C⁴-H), 7.35 (s, 1H, =C-H). ¹³C NMR (CDCl₃, 50 MHz): δ = 21.2, 43.7, 48.4, 129.9, 137.3, 143.8, 149.2.
- 13. Advanced Chemistry Development, Inc. (ACD / Labs) (http://www.acdlabs.com).