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Abstract – 1-Azido-1-deoxy-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose reacts 

with various terminal alkynes in the presence of CuSO4/ascorbic acid in water to 

give the corresponding 1,4-disubstituted 1,2,3-triazoles, which are isolated in 

high yield and purity by simply filtering the precipitate from the reaction mixture. 

Several sugar-derived acetylenes react similarly to yield triazole-linked 

disaccharide analogs.

 

 

With the growing appreciation of the roles that sugars play in numerous biological events there is a demand 

for new compounds that may serve as tools with which to study such processes. Impressive advances have 

been made in the synthesis of O-glycosides, as well as C-glycosides and N-glycosides, which serve as 

glycomimetic analogs of parent O-glycosides.1 Numerous C-glycosidic structures are found in nature and 

the N-glycoside motif appears in the nucleic acids and in N-linked glycopeptides.2 

The control of stereochemistry during O-glycosylation remains one of the ultimate challenges in synthetic 

carbohydrate chemistry, and similar difficulties are encountered in C-glycoside formation. There are few 

truly general approaches to each of these types of compound. The situation is somewhat different in the 

N-glycoside field due to the fact that the most common precursors, i.e. glycosyl azides, are usually prepared 

by stereospecific bimolecular displacement of a glycosyl halide, many of which are available in 

diastereomerically pure form.3 

The formation of 1,2,3-triazoles at the anomeric position of carbohydrates has traditionally involved the 

Huisgen 1,3-dipolar cycloaddition4 between a glycosyl azide and an alkyne partner,5 however the utility of 

the process has been limited due to slow reactions with unactivated alkynes and the formation of isomeric 



 

mixtures of 1,4- and 1,5-disubstituted triazole products. Since glycosyl-1,2,3-triazoles (2, Figure 1) could 

potentially serve as mimics of glycosyl amides (1, Figure 1) we were interested in applying recently 

developed methods for 1,2,3-triazole synthesis based on Cu(I) catalysis. 

Sharpless and colleagues have suggested the 1,2,3-triazole ring as a useful way of conjugating biologically 

active groups.6 Meldal and coworkers reported the use of Cu(I) halides to form peptido-1,4-substituted 

1,2,3-triazoles regiospecifically,7 and very shortly afterwards Sharpless and Fokin published their work on 

the use of CuSO4 in azide-acetylene “ligations” in which the Cu(I) catalyst is generated by reaction of 

CuSO4 with sodium ascorbate.8 Aside from the affordability of this reagent mixture, the fact that the 

reactions were performed in aqueous medium made this system extremely attractive for rapid 

glycosyl-1,2,3-triazole synthesis. 
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There have been several recent reports dealing with copper(I)-catalyzed 1,2,3-triazole synthesis in 

carbohydrate systems. Santoyo-González and colleagues have used an organic-soluble catalyst to produce a 

wide variety of triazole-linked neoglycoconjugates,9 and Gin and coworkers have used similar chemistry to 

build cyclodextrin analogs.10 We now communicate our work on the rapid, regiospecific synthesis and 

isolation of various glucosyl-1,4-disubstituted 1,2,3-triazoles using the Sharpless CuSO4/ascorbic acid 

system using water as the solvent.  

1-Azido-1-deoxy-2,3,4,6-tetra-O-acetyl-β-D-glucopyranose (3, Eq. 1) is available on large scale11 and is 

insoluble in water at room temperature. In initial experiments to determine if co-solvents where needed for 

reactions with various acetylenes, it was found that uncatalyzed reactions were possible but were very slow 

(up to four days with 1-ethynyl-3-fluorobenzene) and resulted in the isolation of mixtures of 1,4- and 

1,5-disubstituted triazoles (4, Eq. 1). No co-solvent was necessary and the products readily precipitated and 

could be isolated by filtration. 
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With CuSO4/ascorbic acid the reactions of azide (3) with various terminal acetylenes were complete within 

eight hours and the products, isolated by filtration, were found to be a single triazole (5, Eq. 2, Table 1).12 



 

Purity was >90% in all cases as judged by 1H NMR spectra. The 1,4-disubstituted triazole products 

correspond to the major isomer formed in the uncatalyzed reactions, which is the accepted outcome for such 

conventional Huisgen dipolar cycloadditions.13,14 Additionally, nOe experiments on triazole 5f (R = Ph) 

show clear interaction between H-1 of the pyranose ring and the proton attached to the triazole ring (Eq. 2), 

which would be unlikely if the product where the 1,5-isomer.    
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The simplicity of this method suggests it would be useful for the synthesis of libraries of triazole-linked 

oligosaccharide analogs.15 To illustrate this, reaction of azide (3) with D-glucuronic acid-derived alkyne (6) 

(Scheme 1) in water in the presence of CuSO4/ascorbic acid gave a single triazole (7, Scheme 1) in 76% 

yield,16 which again was isolated in very pure form simply by filtration and drying. A related 

D-galactose-derived alkyne (8, Scheme 1) required the use of t-BuOH as co-solvent due to the low 

solubility of isopropylidene derivatives versus acetate-protected sugars. However, the product triazole (9, 

Scheme 1) could be isolated in 84% yield by evaporating most of the t-BuOH and allowing the product to 

precipitate from the remaining aqueous mixture.18 
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Table 1. Alkynes used in this work and yields for resultant glucosyl-1,2,3-triazoles. 
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aSatisfactory 1H NMR, 13C NMR, and HRMS spectral data were obtained for all compounds. 
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