HETEROCYCLES, Vol. 63, No. 12, 2004, pp. 2785 - 2795 Received, 3rd September, 2004, Accepted, 7th October, 2004, Published online, 8th October, 2004

PREPARATION OF BENZOTHIOPYRANO[2,3-*b*]INDOLES BY THE REACTION OF 1,3-DIHYDROINDOLE-2-THIONES WITH CERTAIN DIENOPHILES

Sukanta Kamila and Ed Biehl*

Department of Chemistry, Southern Methodist University, Dallas, TX 75275

U. S. A. ebiehl@smu.edu

Abstract – Benzothiopyrano[2,3-*b*]indoles were prepared by the cyclization of 1,3-dihydroindole-2-thiones with various dienophiles. The 1,3-dihydroindole-2-thiones were readily synthesized by the reaction of oxindole with P_2S_5 followed by a piperidine-mediated condensation of the resulting thioindole with a suitable aromatic aldehyde.

INTRODUCTION

3-Substituted 1-alkylidine-3*H*-benzo[*b*]indolin-2-ones have been shown to exhibit inhibitory properties against various receptor tyrosine kinases (RTKs).^{1,2} We³ recently expanded the chemical diversity of this structural type by developing a new strategy towards the synthesis of 3-1-alkylidine-3*H*-benzo[*b*]thiophene-2-ones in which the nitrogen atom has been replaced by a sulfur atom. We were also interested in exploring the possibility of these benzo[*b*]thiophene-2-ones serving as dienes in Diels–Alder cyclization reactions since we⁴ had shown that selonoazadienes react with benzynes to give 4*H*-1,3-benzoselenazines. However, our attempts to carrying out Diels–Alder reactions with benzo[*b*]thiophene-2-ones failed. We subsequently prepared the pyrrole analogs, benzo[*b*]pyrrole-2-thiones (in which the carbonyl oxygen atom of the indolin-2-one ring was placed by a sulfur atom) and found that 2-thiones did reaction with benzynes and dimethyl acetylenedicarboxylate to give new benzothiopyrano[2,3-*b*]indoles. The results are reported herein.

RESULTS AND DISCUSSION

As shown in Scheme 1, the starting benzo[*b*]-2-thiones (4 and 5) were prepared⁵ by the conversion of 2*H*-indol-2-one (1), commonly called oxindole, to the thioindole (2) with P_2S_5 followed by a piperidine-mediated condensation of 2 with aldehydes (**3a–e**) in refluxing benzene. The results are listed in Table 1.

Scheme 1

As shown, (Z)-1,3-dihydro-3-(pyrrol-2-ylmethylene)indole-2-thione (4b) (Entry 2), (Z)-3-(furan-2ylmethylene)-1,3-dihydroindole-2-thione (4e) (Entry 5), and (E)-1,3-dihydro-3-(thien-2ylmethylene)indole-2-thione (5d) (Entry 4) were obtained essentially as single products. However, a mixture of (Z)-(4a)- and (E)-1,3-dihydro-3-(4-isopropylbenzylidine)indole-2-thione (5a), were obtained in a ratio of 72:15, respectively (Entry 1) and a mixture of (Z)- (4c)- and E-1,3-dihydro-3-(4-N,Ndimethylaminobenzylidine)indole-2-thione (5c) was obtained in a ratio of 78:18, respectively (Entry 3). analytical samples of 4a,c and 5a,c were obtained by subjecting a small portion of each mixture Since to column chromatography. Diasterometric assignments of the indole-2-thiones (4 and 5) were made on the basis of their olefinic proton chemical shifts with the Z isomers occurring around δ 7.8 ppm and the E isomers appearing around 7.5 ppm. These chemical shifts were similar to those previously reported for similarly structured indol-2-ones.⁴ In addition, the structure of compound (4b) was confirmed by X-Ray crystallography; the ORTEP drawing of 4b is shown in Figure 1.

Figure 1. ORTEP of Compound (4b)

Table 1. Preparation of Z- (4) and E-Pyrrol-2-thiones (5)

With the indole-2-thiones on hand, their reactions with 4,5-dimethoxybenzyne (**6a**), 3-methoxybenzyne (**6b**), and dimethyl acetylenedicarboxylate (**8**) were carried out. Since dienophiles (**6a** and **8**) would

yield a single adduct, the mixtures (4a/5a and 4c/5c) were used as is. The overall reactions schemes are shown in Scheme 1. We first studied the reaction of indole-2-thiones with 6a since the identification of the structure of Diels-Alder adducts by ¹H NMR and ¹³C NMR spectroscopy would be simplified, and the

Scheme 2

introduction of the dimethoxy groups might induce some biological activity in the resulting adducts. As shown in Scheme 1, compounds (**4a/5a,4b, 4c/5c**) indeed reacted with **6a** to yield single adducts, *i.e.*, 2,3-dimethoxy[1]benzothiopyrano[2,3-*b*]indoles (**7a–c**) in 52–65% yields. The results listed in Table 2 (Entries 1–3)) were obtained by generating 4,5-dimethoxybenzyne (**6a**) *in situ* from a mixture of 2-diazonio 4,5-dimethoxybenzenecarboxylate hydrochloride in refluxing benzene.⁶ The yields of **7a–c** were lower when **6** was generated by the addition of isoamyl nitrite to a refluxing benzene solution (~80 °C) containing 4,5-dimethoxyanthranilic acid.⁷ Interestingly, these indole-2-thiones, unlike selonoazadienes,¹ failed to react when **6** was generated by the reaction of (phenyl)[*o*-(trimethylsilyl)phenyl]iodonium triflate and Me₄NF at room temperature,⁷ or by the reaction of anthranilic acid and isoamyl nitrite in THF 0 °C.⁸ Subsequently, the reaction of 3-methoxybenzyne (**6b**) with (*Z*)-1,3-dihydro-3-(pyrrol-2-ylmethylene)indole-2-thione (**4b**) afforded a 1:1 mixture of 3-methoxy- and 4-methoxyindoles (**7d**) (Entry 4). This indicates that **4b** adds non-regioselectively and in a concerted manner to 3-methoxybenzyne which is consistent with other reports of Diels-Alder cycloadditions to unsymmetric arynes.⁹

Lastly, the reaction of **4** and **5** with dimethyl acetylenedicarboxylate (**8**) gave the indole-2,3-dicarboxylic acid dimethyl esters (**9a–e**) in yields of 68–78% (Entries 5–9). These reactions also required refluxing MeCN for 6 h. The structures of **7** and **9** were confirmed by ¹H NMR and ¹³C NMR spectral analysis. For example, in the ¹H NMR spectra of compounds (**7a–c**) the benzylic hydrogen (H-11) exhibited a singlet in the vicinity of δ 3.8–4.0 ppm whereas the allylic hydrogen (H-1) in **9a–e** exhibited a singlet in the

Entry	Diene	Dieno-	Adduct, Yield	Entry	Diene	Dieno-	Adduct, Yield
		Phile	(%)			phile	(%)
1	4a/5a	ба	^{<i>i</i>-Pr H OMe N OMe N OMe 7a (56)}	6	4a/5a	8	i -Pr H CO_2Me CO_2Me N H
							9a (21)
2	4b	ба	$ \begin{array}{c} \overset{H}{\longrightarrow} & \overset{OMe}{\longrightarrow} & \overset{OMe}{\longrightarrow} & \overset{OMe}{\longrightarrow} & \overset{H}{\longrightarrow} & \overset{OMe}{\longrightarrow} & \overset{H}{\longrightarrow} & $	7	4b	8	H CO_2Me CO_2Me H H CO_2Me H
							Me_2N
3	4c/5c	6a	$ \begin{array}{c} $	8	4c/5c	8	$H CO_2Me$ $H CO_2Me$ CO_2Me H H H H H H H H
			Н				
			$\mathbf{7d}$ (21)	9	8	5d	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
4	4b	6b	+ M H S H	10	8	4e	$ \begin{array}{c} $
			7e (22)				

Table 2. Yields of Diels-Alder Adducts (7 and 9)

range of 3.9–4.3ppm. Additionally, the structure of **9d** was confirmed by X-Ray spectroscopy; an ORTEP drawing of **9d** is shown in Figure 2.

In conclusion, we have shown that 1,3-dihydroindole-2-thiones undergo reaction with 4,5dimethoxybenzyne and dimethyl acetylendicarboxylate to give benzothiopyrano[2,3-*b*]indoles in modest yields. We are not aware of other synthetic methodology that would allow the facile synthesis of these multi-substituted heterocycles.

Figure 2. ORTEP of Compound (9d)

EXPERIMENTAL

General Data: Melting points were taken on a Mel-Temp capillary apparatus and are uncorrected with respect to stem correction. ¹H and ¹³C NMR spectra were recorded on a 400 MHz Bruker AVANCE DRX-400 Multinuclear NMR spectrometer. Chemical shifts are reported in reference to TMS as internal standard.

1,3-Dihydroindole-2-thione (2)

To a solution of oxiindole (5 g, 37 mmol) in 30 mL of dry THF was added P_2S_5 (16.6 g, 37 mmol). The resulting mixture was stirred at rt for 45 min then NaHCO₃ (10.41 g, 123 mmol) was added in three portions and the resulting mixture stirred at rt for an additional 3 h. The solid material, which precipitated during stirring, was separated by vacuum filtration and the mother liquor was concentrated to dryness. The residue was treated with 100 mL of ice water, extracted with CHCl₃ (3X 60 mL) and purified by column chromatography on SiO₂ to give **2** (4.5 g, 82%) as a light yellow solid (EtOAchexane), mp 79–82 °C. ¹H NMR (CDCl₃) δ 4.10 (s, 2H, -CH₂-), 7.10 (m, 2H, Ar-H-5, H-6), 7.27 (m, 2H, Ar-H-4, H-7), 10.80 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 36.7, 110.3, 122.6, 124.9, 125.7, 128.3, 143.1, 178.9. *Anal.* Calcd for C₈H₇NS: C, 64.39; H, 4.73; N, 9.39. Found: C, 64.47; H, 4.80; N, 9.45.

General Procedure for the Preparation of 1,3-Dihydroindole-2-thiones (4,5)

A reaction mixture of 2 (0.5 g, 3.3 mmol), the appropriate aldehyde (3) (4.0 mmol) and piperidine (0.09 g, 1 mL, 0.3 mmol) in dry benzene (6 mL) was stirred at 90 °C for 4 h. The reaction mixture was then cooled to rt, during which time a precipitate was obtained. The precipitate was filtered, washed (benzene), and dried. The dried solid was subjected to column chromatography on SiO₂ with EtOAc-hexane (1:4, v/v) to give 4 and 5.

(Z)- 1,3-Dihydro-4-isopropylbenzylidineindole-2-thione (4a)

This compound was isolated as a light yellow solid (EtOAc-hexane), mp 213–215 °C. ¹H NMR (CDCl₃) δ 1.13 (d, *J*=8.0 Hz, 6H), 2.80 (m, 1H), 6.35 (d, *J*=8.0 Hz, 1H), 6.75 (d, *J*=8.0 Hz, 2H), 7.10 (d, *J*=8.1 Hz, 2H), 7.23 (dd, *J*=7.5, 7.8 Hz, 1H), 7.35 (dd, *J*=7.5, 7.8 Hz, 1H), 7.80 (s, 1H, vinylic H), 7.91 (d, *J*=7.8 Hz, 1H), 8.02 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 24.1, 24.3, 33.9, 110.2, 119.8, 121.5, 122.5, 125.5, 126.2, 129.3, 130.4, 131.9, 132.2, 132.4, 134.7, 147.7, 149.4, 186.5. *Anal.* Calcd for C₁₈H₁₇NS: C, 77.38; H, 6.13; N, 5.01. Found: C, 77.29; H, 6.09; N, 4.99.

(E)-1,3-Dihydro-3-(4-isopropylbenzylidine)indole-2-thione (5a)

This compound was isolated as a light red solid (EtOAc-hexane), mp 214–216 °C. ¹H NMR (CDCl₃) δ 1.17 (d, *J*=8.0 Hz, 6H), 2.74 (m, 1H), 6.30 (d, *J*=8.0 Hz, 1H), 6.76 (d, *J*=8.0 Hz, 2H), 6.90 (d, *J*=8.0 Hz, 2H), 7.13 (dd, *J*=7.5, 7.8 Hz, 1H), 7.23 (dd, *J*=7.5 Hz, 7.8 Hz, 1H), 7.50 (s, 1H, vinylic-H), 7.88, (d, *J*=7.8 Hz, 1H), 8.01 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 24.1, 24.2, 33.9, 110.2, 119.8, 121.5, 123.2, 125.5, 126.2, 129.2, 130.4, 131.9, 132.2, 132.3, 134.6, 147.7, 149.4, 183.5. *Anal.* Calcd for C₁₈H₁₇NS: C, 77.38; H, 6.13; N, 5.01. Found: C, 77.39; H, 6.07; N, 4.97.

(Z)-1,3-Dihydro-3-pyrrol-2-ylmethyleneindole-2-thione (4b)

This compound was isolated as light red needles (EtOAc-hexane), mp 193–195 °C. ¹H NMR (CDCl₃) δ 6.53 (s, 1H), 7.00 (d, *J*=7.5 Hz, 1H), 7.05 (d, *J*=8.0 Hz, 1H), 7.18 (dd, *J*=7.5, 8.0 Hz, 1H), 7.23 (d, *J*=7.5 Hz, 1H), 7.32 (dd, *J*=2.5, 7.5 Hz, 1H), 7.60 (dd, *J*=2.1, 8.0 Hz, 1H), 7.73 (s, 1H, vinylic-H), 8.40 (s, 1H, NH), 8.50 (s, 1H, NH). ¹³C NMR (CDCl₃) δ 109.7, 113.6, 118.4, 123.1, 125.2, 125.3, 126.9, 127.0, 129.8, 130.0, 130.9, 139.6, 184.2. *Anal.* Calcd for C₁₃H₁₀N₂S: C, 69.00; H, 4.45; N, 12.38. Found: C, 69.10; H, 4.42; N, 12.33.

(Z)-1,3-Dihydro-3-(4-N,N-dimethylaminobenzylidine)indole-2-thione (4c)

This compound was isolated as a light red solid (EtOAc-hexane), mp 210–213 °C. ¹H NMR (CDCl₃) δ 2.85 (s, 6H), 6.22 (d, *J*=8.0 Hz, 1H), 7.02 (dd, *J*=7.8, 8.0 Hz, 2H), 7.22 (d, *J*=8.0 Hz, 2H), 7.77 (d, *J*=8.0 Hz, 2H), 7.98 (s, 1H, vinyl-H), 8.0 (d, *J*=8.0 Hz, 1H), 8.37 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 40.4, 110.4, 121.4, 123.2, 125.5, 125.7, 127.6, 128.9, 131.9, 132.9, 135.5, 136.0, 141.0, 141.1, 152.2, 153.1, 195.4. *Anal.* Calcd for C₁₇H₁₆N₂S: C, 72.82; H, 5.75; N, 9.99. Found: C, 72.83; H, 5.77; N, 10.02.

(E)-1,3-Dihydro-3-(4-N,N-dimethylaminobenzylidine)indole-2-thione (5c)

This compound was isolated as a purple solid (EtOAc-hexane), mp 209–210 °C. ¹H NMR (CDCl₃) δ 2.85 (s, 6H), 6.18 (d, *J*=8.0 Hz, 1H), 6.36 (d, *J*=8.0 Hz, 2H), 6.50 (dd, *J*=7.8, 8.0 Hz, 2H), 6.68 (d, *J*=8.0 Hz, 2H), 7.45 (s, 1H, vinylic-H), 7.98 (d, *J*=8.0 Hz, 1H). ¹³C NMR (CDCl₃) δ 42.1, 111.5, 121.4, 123.3, 125.1, 125.5, 127.6, 127.9, 131.9, 133.1, 135.5, 136.1, 141.1, 142.3, 152.3, 153.1, 194.4. *Anal.* Calcd for C₁₇H₁₆N₂S: C, 72.82; H, 5.75; N, 9.99. Found: C, 72.80; H, 5.78; N, 9.98.

(E)-1,3-Dihydro-3-thien-2-ylmethyleneindole-2-thione (5d)

This compound was isolated as a light brown solid (EtOAc-hexane), mp 217–218 °C. ¹H NMR (CDCl₃) δ 6.18 (d, *J*=8.0 Hz, 1H), 6.70 (d, *J*=7.5 Hz, 2H), 6.90 (s, 1H), 7.01–7.14 (m, 3H), 7.45 (s, 1H, vinylic-H), 8.02 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 109.3, 110.2, 110.5, 119.0, 119.6, 121.5, 123.7, 126.2, 127.9, 128.5, 129.6, 194.4. *Anal.* Calcd for C₁₃H₉NS₂: C, 64.16; H, 3.73; N, 5.78. Found: 64.18; H, 3.78; N, 5.80. (**Z**)-3-Furan-2-ylmethylene-1,3-dihydroindole-2-thione (4e)

This compound was obtained as a light red solid (EtOAc-hexane), mp 180–183 °C. ¹H NMR (CDCl₃) δ 6.60 (d, *J*=7.8 Hz, 1H), 7.03 (d, *J*=5.5 Hz, 1H), 7.10–7.14 (m, 2H), 7.29 (dd, *J*=2.3, 7.5 Hz, 1H), 7.81 (s, 1H, vinylic-H), 8.05 (dd, *J*=2.1, 7.8 Hz, 1H), 8.57 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 110.2, 114.3, 123.6, 123.8, 124.7, 125.7, 126.3, 129.7, 130.6, 143.1, 147.1, 152.2, 193.6. *Anal*. Calcd for C₁₃H₉NOS: C, 68.70; H, 3.99; N, 6.16. Found: C, 68.73; H, 3.97; N, 6.19.

General Procedure for the Preparation of 2,3-Dimethoxy[1]benzothiopyrano[2,3-*b*]indoles (7a–c) A well stirred solution containing 4a/5a (0.52 g, 0.18mmol) and a catalytic amount of trichloroacetic acid in dry benzene (10 mL) was heated under reflux in a three-necked flask fitted with a reflux condenser and two addition funnels under argon atmosphere. At this point the dropwise addition of solutions of 4,5-dimethoxyanthranilic acid (1.4 g, 6.9 mmol) and isoamyl nitrite (0.96 g, 6.9 mmol) in dry benzene (5 mL) from the addition funnels was started. The addition was stopped when the starting materials were no longer detected in the reaction mixture by TLC (~1.5 h). β The resulting solution was cooled to rt and evaporated to dryness. The residue was dissolved in CH₂Cl₂, washed with 5% HCl solution, 5% NaOH and water and finally dried over Na₂SO₄. Evaporation of the solvent under reduced pressure afforded the crude compound which was purified by column chromatography using SiO₂ with EtOAc-hexane (1:4, v/v) as eluent. The physical and spectral data are given below for compounds (7a–c).

6,11-Dihydro-11-(4-isopropylphenyl)-2,3-dimethoxy[1]benzothiopyrano[2,3-b]indole (7a)

This compound was obtained as a light yellow viscous oil. ¹H NMR (CDCl₃) δ 1.01 (d, *J*=8.0 Hz, 6H), 2.81 (m, 6H), 3.86 (s, 3H), 3.89 (s, 3H), 3.94 (s, 1H), 6.59 (s, 1H), 6.80 (s, 1H), 7.25 (d, *J*=7.8 Hz, 2H), 7.40 (d, *J*=7.8 Hz, 2H), 7.41–7.45 (m, 4H), 8.03 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 24.2, 32.1, 38.0, 55.9, 56.1, 111.1, 112.2, 115.1, 120.1, 121.0, 122.2, 123.3, 125.7, 127.0, 128.3, 133.5, 138.1, 155.4, 155.9. *Anal.* Calcd for C₂₆H₂₅NO₂S: C, 75.15; H, 8.06; N, 3.37. Found: C, 75.26; H, 6.05; N, 3.40.

This compound was obtained as a light red viscous liquid. ¹H NMR (CDCl₃) δ 3.92 (s, 3H), 3.95 (s, 1H, H-11), 3.98 (s, 3H), 6.38 (d, *J*=1.1 Hz, 1H), 6.80 (s, 1H), 6.90 (dd, *J*=7.5, 8.0 Hz, 1H), 7.12 (d, *J*=1.1 Hz, 1H), 7.28–7.35 (m, 3H), 7.39 (s, 1H), 7.69 (dd, *J*=2.1, 8.0 Hz, 1H), 8.01 (br s, 1H NH), 8.16 (br s, 1H, NH).¹³C NMR (CDCl₃) δ 41.5, 55.9, 56.0, 107.3, 108.5, 110.9, 111.8, 114.9, 117.5, 118.3, 120.5, 121.2, 123.5, 126.8, 130.1, 131.9, 138.1, 152.1, 153.1. *Anal.* Calcd for C₂₁H₁₈N₂O₂S: C, 69.59; H, 5,01; N, 7.73. Found: C, 69.56; H, 4.96; N, 7.78.

6,11-Dihydro-2,3-dimethoxy-11-(thien-2-yl)[1]benzothiopyrano[2,3-b]indole (7c)

This compound was obtained as a yellow viscous oil. ¹H NMR (CDCl₃) δ 3.98 (s), 4.01 (s, 1H, H-11), 4.02 (s, 3H), 6.18 (s, 1H), 6.90 (s, 1H), 7.03 (s, 1H), 7.08 (d, *J*=7.5 Hz, 1H), 7.16 (dd, *J*=7.8, 8.0 Hz, 1H), 7.27–7.30 (m, 2H), 7.49 (s, 1H), 7.80 (dd, *J*=2.5, 8.0 Hz, 1H), 8.06 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 38.9, 54.5, 56.3, 107.5, 109.1, 110.9, 111.3, 115.0, 117.3, 118.9, 120.8, 121.1, 123.2, 126.3, 130.1, 131.3, 139.3, 154.1, 155.0. *Anal.* Calcd for C₂₁H₁₇NOS₂: C, 66.46; H, 4.52; N, 3.69. Found: C, 66.42; H, 4.58; N, 3.81.

General Procedure for the Preparation of Thiopyrano[2,3-*b*]indole-2,3-dicarboxylic Acid Dimethyl Esters (9)

To a well stirred solution of a diasteromeric mixture of **4** and **5** (0.35 mmol) in dry MeCN (5 mL) contained in a round bottom flask fitted with a reflux condenser under argon atmosphere, a solution of dimethyl acetylenedicarboxylate (0.25 g, 1.7 mmol) in MeCN (1 mL) was added through a needle syringe system. The mixture was heated to reflux for 6 h then cooled to rt. The solvent was removed under reduced pressure to afford he crude product (9) which was purified by column chromatography using SiO₂ with EtOAc-hexane (1:4, v/v).

1,5-Dihydro[1](4-isopropylphenyl)thiopyrano[2,3-*b*]indole-2,3-dicarboxylic Acid Dimethyl Ester (9a)

This compound was obtained as a light red viscous oil. ¹H NMR (CDCl₃) δ 1.19 (d, *J*=8.0 Hz, 6H), 2.82 (m, 1H), 3.69 (s, 3H), 3.87 (s, 3H), 4.16 (s, 1H, vinylic-H, H-9), 7.03 (dd, *J*=7.8, 8.0 Hz, 1H), 7.11 (d, *J*=8.0 Hz, 2H), 7.24 (d, *J*=8.0 Hz, 2H), 7.20–7.28 (m, 3H), 8.01 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 24.3, 34.1, 43.5, 52.9, 53.7, 109.9, 110.8, 118.3, 120.7, 122.7, 123.3, 127.2, 128.0, 128.3, 129.2, 134.2, 137.6, 148.7, 164.2. *Anal.* Calcd for C₂₄H₂₃NO₄S: C, 68.39; H, 5.50; N, 3.32. Found: C, 68.45; H, 5.53; N, 3.29.

1,5-Dihydro-9-pyrrol-2-ylthiopyrano[2,3-b]indole-2,3-dicarboxylic Acid Dimethyl Ester (9b)

This compound was obtained as a light red viscous oil. ¹H NMR (CDCl₃) δ 3.79 (s, 3H), 3.8 (s, 3H), 4.71 (s, 1H, vinylic-H, H-9), 6.61 (s, 1H), 6.98 (d, *J*=1.1 Hz, 1H), 7.07 (dd, *J*=7.8, 8.0 Hz, 1H), 7.08 (dd, *J*=7.8, 8.0 Hz, 1H), 7.19 (d, *J*=1.1 Hz, 1H), 7.31-7.39 (m, 2H), 8.02 (br s, 1H, NH), 8.12 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 36.6, 53.2, 53.7, 107.2, 108.6, 110.9, 118.2, 118.5, 121.0, 123.0, 165.0, 165.1. *Anal.* Calcd for C₁₉H₁₆N₂O₄S: C, 61.94; H, 4.38; N, 7.60. Found: C, 61.98; H, 4.37; N, 7.69.

1,5-Dihydro[1](4-*N*,*N*-dimethylaminophenyl)thiopyrano[2,3-*b*]indole-2,3-dicarboxylic Acid Dimethyl Ester (9c)

This compound was obtained as colorless oil. ¹H NMR (CDCl₃) δ 2.86 (s, 6H), 3.71 (s, 3H), 3.82 (s, 3H), 4.26 (s, 1H, vinylic-H, H-9), 7.02 (d, *J*=8.0 Hz, 1H), 7.12 (d, *J*=8.0 Hz, 2H), 7.34 (d, *J*=8.0 Hz, 2H), 7.30–7.38 (m, 3H), 8.16 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 24.3, 43.2, 52.8, 53.6, 109.8, 110.8, 119.3, 121.6, 122.6, 123.3, 126.9, 127.9, 128.3, 129.2, 134.2, 137.6, 147.9, 165.1. *Anal*. Calcd for C₂₃H₂₂N₂O₄S: C, 65.38; H, 5.25; N, 6.63. Found: C, 65.42; H, 5.27; N, 6.60.

1,5-Dihydro-9-thien-2-ylthiopyrano[2,3-b]indole-2,3-dicarboxylic Acid Dimethyl Ester (9d)

This compound was obtained as a light orange solid (CH₂Cl₂-hexane), mp 150–153 °C. ¹H NMR (CDCl₃) δ 3.78 (s, 3H), 3.86 (s, 3H), 4.16 (s, 1H, H-9), 7.04–7.18 (m, 3H), 7.28 (dd, *J*=7.8 Hz, 8.0 Hz, 1H), 7.37 (dd, *J*=2.1, 7.8 Hz, 1H), 7.56 (d, *J*=7.5 Hz, 1H), 7.58 (d, *J*=7.5 Hz, 1H), 8.05 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 37.9, 53.2, 53.8, 109.5, 110.1, 118.0, 120.8, 121.9, 122.9, 125.3, 125.6, 126.0, 127.1, 130.4, 131.5, 137.7, 145.8, 165.4, 167.1. *Anal.* Calcd for C₁₉H₁₅NO₅S: C, 61.78; H, 4.09; N, 3.79. Found: C, 61.89; H, 4.18; N, 3.85.

9-Furan-2-yl-1,5-Dihydrothiopyrano[2,3-b]indole-2,3-dicarboxylic Acid Dimethyl Ester (9e)

This compound was obtained as a tan viscous oil. ¹H NMR (CDCl₃) δ 3.77 (s, 3H), 3.87 (s, 3H), 3.89 (s, 1H, H-9), 6.99 (d, *J*=5.6 Hz, 1H), 7.24 (d, *J*=5.6 Hz, 1H), 7.32 (dd, *J*=7.8, 8.0 Hz, 1H), 7.36 (dd, *J*=7.8, 8.0 Hz, 1H), 7.48 (m, 2H), 7.54 (dd, *J*=1.5, 7.8 Hz, 1H), 8.17 (br s, 1H, NH). ¹³C NMR (CDCl₃) δ 37.0, 53.2, 53.8, 106.9, 107.1, 110.7, 111.0, 118.2, 120.8, 122.2, 122.8, 126.3, 129.8, 131.0, 137.6, 142.6, 153.7, 165.2, 167.2. *Anal.* Calcd for C₂₁H₁₇NO₃S: C, 61.78; H, 4.09; N, 3.79. Found: C, 61.78; H, 4.08; N, 3.80.

ACKNOWLEDGEMENTS

This work was sponsored in part by a grant from the Robert Welch Foundation, Houston, TX, U. S. A.

REFERENCES

- L. Sun, L. Sun, N. Tran, F. Tang, H. App, P. Hirth, G.Mc Mohon, and C. Tang, *J. Med. Chem.*, 1998, 41, 2588.
- S. T. Davis, B. G. Benson, H. N. Bramson, D. E. Chapman, S. H. Dickerson, K. M. Dold, and D. J. Eberwein, *Science*, 2001, 291, 134.
- 3. S. Kamila and E. Biehl, *Heterocycles*, 2004, **63**, 1813.
- 4. U. N. Rao, R. Sathunuru, and E. R. Biehl, *Heterocycles*, 2004, 63, 1067.
- 5. J. Jiong, Y. Wei, J. C. Drach, and L. B. Townsend, J. Med. Chem., 2000, 43, 2456.
- 6. H. Hart and A. Oku, J. Org. Chem., 1972, 37, 4269.
- N. Atanes, L. Castado, E. Guiti'an, C. Saa', J. M. Saa', and R. Suau, J. Org. Chem., 1991, 56, 2984.

- 8. T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z. Meng, and Y. Fujiwara, *J. Am. Chem. Soc.*, 1999, **121**, 11674.
- 9. U. N. Rao, R. Sathunuru, J. A. Maguire, and E. R. Biehl, J. Heterocycl. Chem., 2004, 41, 13.
- M. S. Newman and R. Kannan, J. Org. Chem., 1976, 41, 3356. A. M. d'A. R. Gonsalves, T. M. V. D. Pinho e Melo, and T. L. Gilchrist, *Tetrahedron*, 1992, 48, 6821. D. Poliart and B. Rickborn, J. Org. Chem., 1987, 52, 792.