THIAZOLIDINONE-ANNULATED PYRROLOBENZODIAZEPINES. SYNTHESES AND PROPERTIES OF A NEW RING SYSTEM

Andreas Schmidt*^a, Abbas Gholipour Shilabin^a, and Martin Nieger^b

- a) Technical University of Clausthal, Institute of Organic Chemistry, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany. E-mail: schmidt@ioc.tu-clausthal.de
- b) University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany.

Abstract – New derivatives of pyrrolo[2,1-c][1,4]benzodiazepines were synthesized starting from a thiolactam and 2-bromoacetyl chlorides. Spectroscopic investigations and an X-Ray analysis are presented.

INTRODUCTION

Naturally occurring as well as synthetically prepared pyrrolo[2,1-c][1,4]benzodiazepines are biologically and pharmacologically highly interesting compounds as some of them recognize and bind to DNA and display cancerostatic and anti-infective properties.¹ The (*S*)-configuration of the α -C-atom of the pyrrolidine ring causes an isohelicity of this ring system with the minor groove of DNA,² so that tautomerism involving this position plays a crucial role for the biological activities of this class of compounds. We were interested in new derivatives of pyrrolobenzodiazepines and report here the syntheses and properties of thiazolidinone-annulated pyrrolobenzodiazepines which - to the best of our knowledge - are the first representatives of a new ring system. We focussed our attention on the potential tautomerism of the thiazole moiety, which is known to be complex³ and strongly influenced by the nature and location of the substituents, solvents and architecture of the molecule.⁴ Thus, three forms, thiazolidin-4-one, thiazol-4-ols as well as mesoionic partial structures had to be taken into consideration. The latter mentioned aromatic thioisomünchnone⁵ caused an intact (*S*)-configurated pyrrolidine moiety of this biologically highly important ring system. The aromaticity indices, I_A indicate that the mesoionic forms have comparable aromaticities to the parent hydroxy thiazoles.⁶

RESULTS AND DISCUSSION

2-Bromoacetyl chloride and its 2-ethyl- and 2-phenyl-substituted derivatives converted the monothiolactam (1)⁷ at room temperature in THF into the 5,6-dihydro-4*H*-3-thia-6a,11b-diazabenzo[*g*]cyclopenta[*e*]-azulene-1,7-diones (2) – (4). This reaction typically proceeds *via* intermediary iminium salts which can sometimes be trapped and used for heterocyclic synthesis.⁵ The treatment of the thiolactam (1) with 2-(4-nitrophenyl)-2-bromoacetyl chloride, however, resulted in the formation of a complex mixture of compounds from which no nitro derivative (5) could be isolated (Scheme 1). The formations of the thiazolidinones (2A) – (4A) in CDCl₃ and DMSO-d₆, respectively, were unambiguously proved by the existence of only three CH₂-groups (4-*H*, 5-*H*, 6-*H*) of the pyrrolidine ring, and one additional sp³-hybridized carbon atom which couples with the ethyl (3A) and phenyl (4A) group, respectively. In the 2-unsubstituted compound (2A), this CH₂-group forms a singlet at $\delta = 3.83$ ppm in CDCl₃. In contrast to thiazol-4(5*H*)-ones,^{4,8} neither the tautomeric thioisomünchnones (2B) – (4B), nor hydroxy isomers (2C) – (4C) were detectable by NMR spectroscopy, regardless of the solvent used. The C(2)-*H* protons are acidic and can be exchanged by deuterium on addition of D₂O to the solutions, respectively.

As remarkable differences in the tautomerisations of thiazols and its reduced derivatives exist in the solid state and in solution,³ we performed an X-Ray analysis.⁹ Suitable single crystals of the 2-phenyl derivative (4) were obtained by slow evaporation of a concentrated solution in 2-propanol. The compound crystallized

monoclinic. The molecular structure and the crystallographic numbering are shown in Figure 1. The 6:7:5 pyrrolobenzodiazepine ring system adopts a twisted conformation. The C6-C7 bond distance (crystallographic numbering) is 132.21(17) pm which corresponds to a $C(sp^2)=C(sp^2)$ double bond. This C=C-bond is twisted due to the helicity of the 6:7:5 ring system, so that the dihedral angles C5-C6-C7-N11 and N2-C6-C7-S8 are $-173.40(12)^{\circ}$ and $172.06(9)^{\circ}$, respectively. The thiazolidine ring adopts an envelope conformation. The sulfur atom is located above a plane defined by C9-C10-N11-C7, the dihedral angle of which is $1.44(15)^{\circ}$. The dihedral angles N11-C7-S8-C9 and S8-C9-C10-N11 were determined to be $31.81(9)^{\circ}$ and $21.43(12^{\circ})$, respectively. The phenyl ring is twisted by approximately 51° around the C9-C91-bond. Thus, (4) displays a different behaviour than thiazol-4-ones, the 4-hydroxy isomers of which predominate in the solid state.^{3,12} One hydrogen bonding is found between the CH-acidic C9-H and the C1=O carbonyl group of a neighbouring molecule. The elemental cell is presented in Figure 2.

Figure 1. Molecular drawing of 4A (left); hydrogen bonding between two molecules (right).

Figure 2. Elemental cell of 4A.

 Table 1. Atom Nos. / Selected bond lengths [pm], bond angles [°], and torsion angles [°] of (4A) (crystallographic numbering)

(erystanographic hamoering)					
C1-N2	136.07(17)	O1-C1-N2	119.10(12)	C17-C1-N2-C6	0.6(2)
N2-C6	141.88(16)	C1-N2-C6	131.21(11)	C17-C1-N2-C3	-172.40(11)
C7-N11	142.54(15)	C7-C6-N2	125.22(12)	C1-N2-C3-C4	179.60(11)
N11-C12	143.74(15)	C6-C7-N11	124.81(12)	N2-C3-C4-C5	-24.96(14)
C7-S8	176.26(13)	N11-C7-S8	109.37(9)	C1-N2-C6-C7	29.9(2)
S8-C9	183.66(14)	C7-S8-C9	88.49(6)	N2-C6-C7-N11	-0.7(2)
C9-C10	153.15(17)	C10-C9-S8	105.02(8)	C5-C6-C7-N11	-173.40(12)
C10-N11	138.16(16)	C96-C91-C9	119.64(11)	N2-C6-C7-S8	172.06(9)
C10-O10	121.02(15)	O10-C10-N11	124.87(12)	C10-N11-C12-C13	33.23(17)
C9-C91	150.25(18)	C10-N11-C7	113.99(10)	C10-C9-C91-C92	-50.98(16)

It is known that aromatizations of thiazolidines can be accomplished by addition to exocyclic double bonds.⁴ We therefore studied the behaviour of the new ring system towards acids, bases, and alkylating agents. The non-nucleophilic base 1,8-dimethylaminonaphthalene (proton sponge[®]) induced an immediate decomposition of **4** in THF to a complex mixture, whereas 4-dimethylaminopyridine (DMAP) and triethylamine, respectively, were not able to deprotonate this compound. On addition of NaOD/D₂O to a DMSO-d₆-solution of **4**, the resoncance frequencies shift considerably upfield due to the formation of the

enolate (6). Thus, the proton in the *para*-position of the phenyl ring, which is overlapped in DMSO-d₆ by other signals at approximately $\delta = 7.39$ ppm, shifts to $\delta = 6.53$ ppm on addition of the base. The signal of C(2)-H at $\delta = 5.59$ ppm disappears in parallel with a shifting of the resonance frequency of C(2) at $\delta = 52.6$ ppm to $\delta = 72.6$ ppm in the ¹³C NMR spectra on addition of the base (for numbering, *cf.* Scheme 1). Potassium *tert*-butoxide proved to be the most suited base to deprotonate the phenyl derivative (4) at C(2) in THF at -70 °C to the corresponding enolate on a preparative scale. The enolate could be trapped by methyl iodide to form the 2-methyl-2-phenyl-substituted pyrrolobenzodiazepine (7) in 82% yield. HMBC-NMR spectroscopic experiments proved the couplings of the methyl protons with C(2), C(1)=O, and the phenyl group. Neither mesoion (8), which - in contrast to (7) - contained two aromatic rings, nor the *O*-methylated enol (9) were detected. Accordingly, no changes were moreover observable in the NMR spectra on addition of DCl, so that a protonation of the C(3a)=C(3b)-double bond could be excluded from consideration under these conditions.

ACKNOWLEDGEMENTS

Prof. Dr. E. Niecke, Prof. Dr. K. H. Dötz, and Prof. Dr. F. Vögtle, university of Bonn, are gratefully acknowledged for providing the X-ray crystallography facilities. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.

EXPERIMENTAL

General methods: The ¹H and ¹³C NMR spectra were recorded on a Bruker ARX-400 and DPX-200 in DMSO-d₆ and CDCl₃ (400 and 200 MHz for ¹H NMR), respectively. The chemical shifts are reported in ppm relative to internal tetramethylsilane ($\delta = 0.00$ ppm). FT-IR spectra were obtained on a Bruker Vektor 22 in the range of 400 to 4000 cm⁻¹ (2.5 % pellets in KBr). The GC-MS spectra were recorded on a GC Hewlett-Packard 5980, Serie II in combination with a MS Hewlett-Packard 5989 B, and on a Varian GC3900 with SAT2100T mass spectrometer. Solvents and reagents were obtained from commercial sources and used as received without further purification.

General procedure for the preparation of the benzocyclopentaazulene-1,7-diones (2 - 4). To a solution containing 0.232 g (1.0 mmol) of the monothiolactam (1) in 30 mL of anhydrous THF was added 1.2 mmol of the corresponding freshly distilled acetyl chloride. The mixture was stirred for 4 - 6 hours at rt under nitrogen and then quenched by addition of 20 mL of saturated NaHCO₃ solution. After extraction with 2×20 mL of chloroform, the combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude residue was subjected to flash silica gel column chromatography using ethyl acetate / petroleum ether (1:4) as eluent to give yellow solids.

5,6-Dihydro-4*H*-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (2).

α-Bromoacetyl chloride (0.19 g, 1.2 mmol) was used, yield 0.20 g (75%), mp 165 - 167 °C (ethanol); ¹H NMR (CDCl₃): δ = 8.00 (dd, *J* = 7.95/1.59 Hz, 1H, 8-H), 7.51 - 7.55 (m, 1H, 9-H), 7.44 (dd, *J* = 8.19/0.98 Hz, 1H, 11-H), 7.28 - 7.32 (m, 1H, 10-H), 3.90 - 3.94 (m, 2H, 6-H), 3.83 (s, 2H, 2-H), 2.67 (t, *J* = 7.95 Hz, 2H, 4-H), 1.98 - 2.05 (m, 2H, 5-H); ¹³C NMR (CDCl₃): δ = 20.8 (CH₂), 31.1 (CH₂), 35.8 (CH₂), 50.1 (CH₂), 115.5, 124.3, 124.9, 127.2, 128.5, 133.3, 133.6, 138.9, 165.4 (CO), 172.7 (CO); IR (KBr) 3074, 2983, 2934, 1721, 1700, 1625, 1528, 1489, 1451, 1393, 1325, 1242, 1209 cm⁻¹; MS *m/z* (rel. int.) 272 (M⁺, 100), 230 (9), 201 (11), 76 (12), 50 (13); Anal. Calcd for C₁₄H₁₂N₂O₂S: C, 61.75; H, 4.44; N, 10.29. Found: C, 61.44; H, 4.43; N, 10.24.

2-Ethyl-5,6-dihydro-4*H*-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (3).

α-Bromoethylacetyl chloride (0.22 g, 1.2 mmol) was used, yield 0.17 g (57%), mp 131 - 132 °C (ethanol); ¹H NMR (CDCl₃): δ = 7.99 (dd, *J* = 7.89/1.58 Hz, 1H, 8-H), 7.47 - 7.56 (m, 1H, 9-H), 7.40 (dd, *J* = 8.21/1.14 Hz, 1H, 11-H), 7.24 - 7.32 (m, 1H, 10-H), 4.03 (dd, *J* = 8.72/4.29 Hz, 1H, 2-H), 3.88 - 3.95 (m, 2H, 6-H), 2.64 - 2.72 (m, 2H, 4-H), 2.11 - 2.32 (m, 1H, 5-H), 1.86 - 2.08 (m, 2H), 1.10 (t, *J* = 7.33 Hz, 3H, CH₃); ¹³C NMR (CDCl₃): δ = 11.6 (CH₃), 20.5 (CH₂), 25.8 (CH₂), 30.8 (CH₂), 49.7 (CH₂), 52.1 (CH), 114.3, 123.9, 124.3, 126.6, 128.0, 132.8, 133.0, 138.6, 165.0 (CO), 174.4 (CO); IR (KBr) 2966, 2874, 1724, 1703, 1628, 1451, 1393, 1319, 1199 cm⁻¹; MS *m/z* (rel. Int.) 300 (M⁺, 100), 195 (10); Anal. Calcd for C₁₆H₁₆N₂O₂S: C, 63.98; H, 5.37; N, 9.33. Found: C, 63.79; H, 5.32; N, 9.35.

2-Phenyl-5,6-dihydro-4H-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (4).

α-Bromophenylacetyl chloride (0.28 g, 1.2 mmol) was used, yield 0.26 g (65%), mp 193-195 °C (2-propanol); ¹H NMR (CDCl₃): δ = 8.02 (dd, *J* = 7.95/1.47 Hz, 1H, 8-H), 7.51 - 7.56 (m, 1H, 9-H), 7.36 - 7.48 (m, 6H), 7.29 - 7.33 (m, 1H), 5.15 (s, 1H, 2-H), 3.90 - 4.00 (m, 2H, 6-H), 2.65 - 2.77 (m, 2H, 4-H), 1.96 - 2.07 (m, 2H, 5-H); ¹³C NMR (CDCl₃): δ = 21.0 (CH₂), 31.3 (CH₂), 50.2 (CH₂), 54.3 (CH), 114.3, 124.4, 125.6, 127.2, 128.5, 128.8, 129.1, 129.5, 133.3, 133.6, 136.6, 139.1, 165.5 (CO), 173.3 (CO); IR

(KBr) 3057, 2896, 1719, 1699, 1625, 1574, 1489, 1451, 1394, 1328, 1242, 1201 cm⁻¹; MS *m/z* (rel. Int.) 348 (M⁺, 100), 320 (6), 199 (7), 90 (8); Anal. Calcd for C₂₀H₁₆N₂O₂S: C, 68.94; H, 4.63; N, 8.04. Found: C, 69.09; H, 4.72; N, 7.87.

2-Methyl-2-phenyl-5,6-dihydro-4*H*-3-thia-6a,11b-diazabenzo[g]cyclopenta[e]azulene-1,7-dione (7).

To a solution of 0.174 g (0.50 mmol) of phenylthiazolidinone (**4**) in anhydrous THF (10 mL) was added 0.068 g (0.6 mmol) of potassium *tert*-butoxide portionwise at -70 °C under nitrogen. The resulting mixture was stirred for additional 10 min at the same temperature. Methyl iodide (0.3 mL) was then added at -70 °C, and the mixture was warmed to rt over a period of 10 min. Stirring was then continued for additional 30 min at rt. Then, the reaction was cautiously quenched with 10 mL of saturated NH₄Cl solution and extracted with 2 × 20 mL of chloroform. The combined organic layers were dried over Na₂SO₄, and concentrated in *vacuo*. Purification by flash chromatography using ethyl acetate / petroleum ether (1:3) as eluent gave product (**7**) as a pale-yellow solid (0.148 g, 82%), mp 230 - 232 °C (acetonitrile); ¹H NMR (CDCl₃): δ = 7.97 - 8.02 (m, 1H, 8-H), 7.50 - 7.60 (m, 4H), 7.28 - 7.42 (m, 4H), 3.83 - 3.90 (m, 2H, 6-H), 2.52 - 2.78 (m, 2H, 4-H), 2.03 (s, 3H, CH₃), 1.74 - 1.99 (m, 2H, 5-H); ¹³C NMR (CDCl₃): δ = 20.6 (CH₂), 26.4 (CH₃), 31.1 (CH₂), 49.7 (CH₂), 60.4, 123.9, 126.1, 126.7, 127.9, 128.0, 128.6, 132.7, 133.1, 138.7, 140.5, 165.2 (CO), 175.4 (CO); IR (KBr) 3070, 2965, 1715, 1690, 1630, 1489, 1454, 1389, 1328, 1197 cm⁻¹; MS *m*/*z* (rel. Int.) 363 (M⁺+1, 100), 333 (25), 301 (18), 226 (37), 195 (29), 159 (14), 104 (20), 79 (8); Anal. Calcd for C₂₁H₁₈N₂O₂S: C, 69.59; H, 5.01; N, 7.73. Found: C, 69.44; H, 4.98; N, 7.79.

REFERENCES AND NOTES

- H. J. Medina, A. C. Paladini, and I. Izqierdo, *Behav. Brain Res.*, 1993, 58, 1; L. H. Hurley and F. L. Boyed, *TIPS*, 1988, 9, 402; D. E. Thurston and A. S. Thompson, *Chem. Br.*, 1990, 26, 767; P. B. Dervan, *Science*, 1986, 232, 464; W. Leimgruber, V. Stefanovic, F. Schenker, A. Karr, and J. Berger, *J. Am. Chem. Soc.*, 1965, 87, 5791; K.-I. Shimizu, I. Kawamoto, F. Tomita, M. Morimoto, and K. Fujimoto, *J. Antibiot.*, 1982, 35, 972; M. Konishi, H. Ohkuma, N. Naruse, and H. Kawaguchi, *J. Antibiot.*, 1984, 37, 200; Z. Tazuka and T. Takaya, *J. Antibiot.*, 1983, 36, 142; J. E. Hochlowski, W. W. Andres, R. J. Theriault, M. Jackson, and J. B. McAlpine, *J. Antibiot.*, 1987, 40, 145.
- D. E. Thurston, D. S. Bose, A. S. Thompson, P. W. Howard, A. Leoni, S. J. Croker, T. Jenkins, S. Neidle, J. A. Hartley, and L. H. Hurley, *J. Org. Chem.*, 1996, **61**, 8141; M. S. Puvvada, J. A. Hartley, T. C. Jenkins, and D. E. Thurston, *Nucleic Acid Res.*, 1993, **21**, 3671; L. H. Hurley and D. E. Thurston, *Pharmaceut. Res.*, 1984, **2**, 52; D. E. Thurston, in *'Molecular Aspects of Anticancer Drug-DNA*

Interactions, ed. by S. Neidle and M. J. Waring, Macmillan Press Ltd., Basingstoke, Hants, UK, 1993, Vol. 1, pp. 54 – 88.

- 3. J. Elguero, C. Marzin, A. R. Katritzky, and P. Linda, in '*The Tautomerism of Heterocycles*,' Academic Press, New York, 1976, p. 363.
- 4. D. Kikelj and U. Urleb, in '*Science of Synthesis*,' Vol. 11, ed. by E. Schaumann, Chapter 11.17, Thieme Verlag, Stuttgart, 2002, p. 627.
- A. Padwa, L. S. Beall, T. M. Heidelbaugh, B. Liu, and S. M. Sheehan, *J. Org. Chem.*, 2000, 65, 2684;
 A. Padwa, T. M. Heidelbaugh, and J. T. Kuethe, *J. Org. Chem.*, 2000, 65, 2368; A. Padwa, S. M. Sheehan, and C. Straub, *J. Org. Chem.*, 1999, 64, 8648.
- 6. C. W. Bird, *Heterocycles*, 1994, **37**, 249.
- A. Kamal, P. W. Howard, B. S. N. Reddy, B. S. P. Reddy, and D. E. Thurston, *Tetrahedron*, 1997, 53, 3223.
- A. O. Gukasyan, L. Kh. Galstyan, and A. A. Avetisyan, *Arm. Khim. Zh.*, 1986, **39**, 686 [*Chem. Abstr.*, 1988, **108**, 131646].
- 9. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-249826. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk). Some crystal data of 4: C₂₀H₁₆N₂O₂S; M = 348.41; space group P2₁/n (no. 14); dimensions 0.50 x 0.30 x 0.15 mm, a = 13.4178(3), b = 9.1816(2), c = 13.4360(4) Å; $\beta = 100.102(1)^{\circ}$; V = 1629.61(7) Å³, D_c = 1.420 Mg m⁻³, Z = 4, μ (MoK α) = 0.215 mm⁻¹; T = 123(2) K; F(000) = 728, 15182 reflections were collected in a Nonius KappaCD diffractometer (2 Θ_{max} = 55°, -17 ≤ h ≤ 15, -9 ≤ k ≤ 9, -16 ≤ 1 ≤ 16), 3629 symmetry independent reflections (R_{int} = 0.0347) were used for the structure solution (direct methods)¹⁰ and refinement (full-matrix least-squares on F², ¹¹ 226 parameters), non-hydrogen atoms were refined anisotropically, H atoms localized by difference electron density, and were defined using a riding model; wR2 (all data) = 0.0890 [R1 = 0.0329 for 2900 I>2\sigma(I)].
- 10. G. M. Sheldrick, SHELXS-97, Acta Cryst., 1990, A46, 467.
- 11. G. M. Sheldrick, SHELXL-97, University of Göttingen, 1997.
- A. Dondoni and P. Merino, in 'Comprehensive Heterocyclic Chemistry II,' ed. by A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Pergamon, Oxford, 1994, Vol. 3; F. A. J. Kerdesky, J. H. Holms, J. L. Moore, R. L. Bell, R. D. Dyer, G. W. Carter, and D. W. Brooks, J. Med. Chem., 1991, 34, 2158; L. Kh. Galstyan, A. A. Karapetyan, A. O. Gukasyan, A. A. Avetisyan, and Y. T. Struchkov, Arm. Khim. Zh., 1986, 39, 688 [Chem. Abstr., 1988, 108, 37713].