PALLADIUM-CATALYZED INSERTION-CYCLIZATION REACTION OF 2,3-DIENYL ALCOHOLS WITH ARYL IODIDES IN WATER: SYNTHESIS OF 1-ARYLVINYL-SUBSTITUTED EPOXIDES[§]

Masahiro Yoshida,* Takayuki Ishii, Takahiro Gotou, and Masataka Ihara*

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai, 980-8578, Japan

Abstract – A methodology for the synthesis of substituted epoxides in water has been described. The reactions of 2,3-dienyl alcohols with aryl iodides in the presence of palladium catalyst in water afford the 1-arylvinyl-substituted epoxides. It is clear that water-soluble ligand TPPDS is suitable for the reaction, and various epoxides are produced in moderate to good yields.

Organic reactions in aqueous medium have been received significant attention as a result of environmental and economic considerations. The formation of carbon–carbon bonds using a transition metal catalyst in water represents one of the most attractive tactic in this area.¹ Transition metal catalysts generally have poor reactivity in water because of low solubility in aqueous medium. To solve these problems, various water-soluble ligands have been developed.² TPPDS and TPPTS are the most popular water-soluble ligands,³ which are utilized in a variety of transition metal-catalyzed reactions.^{1,2}

Palladium-catalyzed reaction of 2,3-dienylalcohols with aryl iodides is the useful method to construct 1-arylvinyl-substituted epoxides.⁴ In the reaction, an epoxide ring is effectively produced in accordance with the formation of carbon–carbon bond *via* the π -allylpalladium intermediate. We were interested in the reaction carrying out in aqueous media. Herein, we describe a preliminary result concerning the palladium-catalyzed reaction of 2,3-dienylalcohols with aryl iodides in water (Scheme 1).

[§]Dedicated to Dr. Pierre Potier on the occasion of his 70th birthday

Scheme 1. Synthesis of 1-arylvinyl-substituted epoxides in water.

Initial experiments focused on finding a catalyst system that would promote the reaction in water (Table 1).⁵ When the reaction of 1-(1,2-propadienyl)cyclohexanol (**1a**)⁶ with iodobenzene (**2b**) was carried out in the presence of 10 mol % Pd(OAc)₂, 10 mol % dppe, 2.0 eq. of *i*-Pr₂NH and sodium dodecyl sulfate (SDS) in water at 80 °C for 96 h, the corresponding epoxide (**3aa**) was produced in 51% yield (Entry 1). Although the attempts using other bidentate ligands dppb and dppf were failed (Entries 2 and 3), **3aa** was provided in 62% yield in case of monodentate PPh₃ (Entry 4). Furthermore, it was clear that the yield was improved by using water-soluble ligands (Entries 5 and 6). The epoxide was obtained in 66% yield when 20 mol % TPPTS was used as a ligand (Entry 5). The reaction in the presence of TPPDS completed within 12 h to afford **3aa** in 83% yield (Entry 6). Studies using other bases at various temperature did not improve the yield (Entries 7–10).

Table 1. Reactions of 2,3-dienyl alcohol	(1a) with iodobenzene (2a) in water
--	-------------------------------------

	HO	 10 mol % ligand 2.0 eq. ba 2.0 eq. S 	Pd(OAc) ₂ $\overrightarrow{\text{ase,}}$ DS, water, Δ	Ph	
	1a	2a		3aa	
Entry	Ligand	Base	Temp. (°C)	Time (h)	Yield (%)
1	10 mol % dppe	<i>i</i> -Pr ₂ NH	80	96	51
2	10 mol % dppb	<i>i</i> -Pr ₂ NH	80	96	trace
3	10 mol % dppf	<i>i</i> -Pr ₂ NH	80	96	23
4	20 mol % PPh ₃	<i>i</i> -Pr ₂ NH	80	36	62
5	20 mol % TPPTS	<i>i</i> -Pr ₂ NH	80	74	66
6	20 mol % TPPDS	<i>i</i> -Pr ₂ NH	80	12	83
7	20 mol % TPPDS	Et ₃ N	80	12	59
8	20 mol % TPPDS	K_2CO_3	80	12	53
9	20 mol % TPPDS	<i>i</i> -Pr ₂ NH	60	18	54
10	20 mol % TPPDS	<i>i</i> -Pr ₂ NH	100	10	61

A series of substituted aryl iodides (2a–f) were subjected to the reaction with 1a to further define the reaction scope (Table 2). When 1a was treated with the electron donating group-substituted aryl iodides (2b and 2c), the corresponding epoxides (3ab and 3ac) were obtained in 33% and 32% yields, respectively (Entries 2 and 3). The reaction with 1-iodonaphthalene (2d) also afforded the

naphthyl-substituted product (**3ad**) in 51% yield (Entry 3). On the other hand, the nitro- and 4-acetylphenyl-substituted products (**3ae** and **3af**) were provided in 86% and 69% yields within 5 h from electron deficient aryl iodides (**2e** and **2f**) (Entries 5 and 6).

	но		10 mol 20 mol	% Pd(OAc) ₂ % TPPDS		Ar
	$\langle \rangle$	+ An	2.0 eq. 2.0 eq.	<i>i</i> -Pr ₂ NH, SDS, water		
	1a	2a-f	80 °C		3aa-af	
Entry	Aı	•		Time (h)	Product	Yield (%)
1	2a: phenyl			12	3aa	83
2	2b : 4-meth	ylpheny	1	96	3ab	33
3	2c : 4-meth	oxyphen	yl	96	3ac	32
4	2d : 1-naph	thyl		36	3ad	51
5	2e: 4-nitro	phenyl		2.5	3ae	86
6	2f : 4-acety	lphenyl		5	3af	69

Table 2. Reactions of 2,3-dienyl alcohol (1a) with aryl iodides (2a–f) in water.

We next examined the reactions of various 2,3-dienylalcohols (**1a–e**) with iodobenzene (**2a**) (Table 3). When the substrates (**1b** and **1c**) containing alkyl side chains were used, the corresponding products (**3ba** and **3ca**) were successfully yielded in 74% and 54% yields, respectively (Entries 2 and 3). The reaction of diphenyl-substituted substrate (**1d**)⁷ also afforded **3da** in 72% yield (Entry 4). We also studied the reaction using an unsymmetric substrate. The substrate (**1e**),⁷ having a methyl and phenyl groups, reacted with **2a** to afford a mixture of products (*trans-* and *cis-***3ea**) in 70% yield with *trans-*selectivity (*trans : cis* = 10 : 3).

Table 3. Reactions of vario	us 2,3-dienyl alcoł	nols (1a-e) with iodob	enzene (2a) in water
-----------------------------	---------------------	------------------------	----------------------

	HO	10 mol % Pd(0 20 mol % TPP	DAc) ₂ PDS R ¹ H	١r
	$R^{1} \sqrt{R^{2}} + F^{11}$ R^{2} 1a-e 2a	<i>i</i> -Pr₂NH, SDS, 80 ⁰C	water R ² 3aa-ea	1
Entry	Substrate	Time (h)	Product	Yield (%)
1	$1a: R^1 + R^2 = cyclohexyl$	12	3aa	83
2	1b : R^1 , R^2 = propyl	80	3ba	74
3	1c : \mathbb{R}^1 , \mathbb{R}^2 = pentyl	96	3ca	54
4	1d : R^1 , R^2 = phenyl	9	3da	72
5	1e : $R^1 = Me_1R^2 = Ph_2$	11	trans- and cis- 3ea	$70 (trans: cis=10:3)^{a}$

^{*a*} The ratio of diastereomer was determined by ¹H-NMR spectral integration of olefinic methylene signals (δ 5.71 and 5.41 for *trans*-**3ea**, δ 5.27 and 5.10 for *cis*-**3ea**), and the stereochemistry was determined by NOESY spectra of *trans*-**3ea**.

In conclusion, we have developed a methodology for the synthesis of 1-arylvinyl-substituted epoxides in water. A variety of 2,3-dienyl alcohols and aryl iodides were transformed to the corresponding products by palladium catalyst in combination with water-soluble ligand TPPDS, and the methodology is a useful in view of environmental concerns. Applications to the other kinds of palladium-catalyzed carbon–carbon bonds-formation reactions in water are now in progress.

ACKNOWLEDGEMENTS

This study was supported in part by Grant-in-Aid for Encouragements for Young Scientists (B) from the Japan Society for the Promotion of Science (JSPS) (for M.Y.).

REFERENCES AND NOTES

- P. A. Grieco, 'Organic Synthesis in Water' Blacky Academic and Professional, London, 1998; C. J. Li, T. H. Chan, 'Organic Reactions in Organic Media' John Wiley and Sons, New York, 1997; B. Cornils and W. A. Herrmann, 'Aqueous Phase Organometallic Catalysis: Concepts and Applications' Wiley-VCH, Weinheim, 1998.
- W. A. Herrmann and C. W. Kohlpaintner, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 1524; F. Joó and Á. Kathó, *J. Mol. Catal. A*, 1997, **116**, 349; K. V. Katti, H. Gali, C. J. Smith, and D. E. Berning, *Acc. Chem. Res.*, 1999, **32**, 9; J. P. Genet and M. Saignac, *J. Organomet. Chem.*, 1999, **576**, 305.
- 3. These ligands are commercially available from Strem Chemicals.
- 4. S. Ma and S. Zhao, J. Am. Chem. Soc., 1999, 121, 7943.
- 5. General procedure for the palladium-catalyzed reaction of 2,3-dienyl alcohols with aryl iodides (Entry 6 in Table 1). To a stirred solution of 1a (49.1 mg, 0.36 mmol) in H₂O (3.5 mL) was added iodobenzene (1b) (60 μ L, 0.53 mmol), Pd(OAc)₂ (8.1 mg, 0.036 mmol), TPPDS (35.4 mg, 0.071 mmol), *i*-Pr₂NH (0.100 mL, 0.710 mmol), and SDS (216 mg, 0.710 mmol) at rt, and stirring was continued for 12 h at 80 °C. After extraction of the reaction mixture with AcOEt followed by evaporation of the elute, the residue was chromatographed on silica gel with hexane–AcOEt (96 : 4) as eluent to give **3aa** (63.3 mg, 83%) as an yellow oil: R_f = 0.49 (10 % AcOEt in hexane); IR (neat) 2932, 2856, 1630 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 7.45 (2H, d, *J* = 7.2 Hz), 7.36 (2H, t, *J* = 7.2 Hz), 7.31 (1H, t, *J* = 7.2 Hz), 5.62 (1H, s), 5.25 (1H, s), 3.58 (1H, s), 1.82–1.42 (10H, m); ¹³C-NMR (100 MHz, CDCl₃) δ 141.6, 138.2, 128.4, 127.8, 125.6, 112.7, 65.2, 64.8, 35.5, 27.7, 25.7, 25.1, 24.7; MS *m*/z 214 (M⁺); HRMS *m*/z calcd for C₁₅H₁₈O 214.1357 (M⁺), found 214.1331.
- 6. P. Place and C. Verniere, J. Gore, *Tetrahedron*, 1981, 37, 1359.
- 7. N. Kurono, K. Sugita, and M. Tokuda, *Tetrahedron*, 2000, 56, 847.