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Abstract – Iodine-induced intramolecular cyclizations of γ-alkenyl-N-

alkoxyamines preferentially produce 2,6-trans-disubstituted piperidines.
Subsequent iodoetherifications of N-benzyloxypiperidines demonstrate the

stereoselective transfer of oxygen to a proximate carbon via formation of bicyclic

1,3-syn-isoxazolidines.  The strategy facilitates preparation of nonracemic
piperidine diols from acyclic, optically active alcohols.   

Piperidine alkaloids are among the most common heterocyclic natural products, and many studies have
examined the development of stereoselective pathways for the preparation of functionalized examples of

this family.1,2 In part, these efforts have significantly contributed toward the stereocontrolled formation of

amino alcohols as a central topic in medicinal chemistry.3 Thus, examples such as dihydroandrachcine
(1),4 sedinine (2),5 and clavepictine B (3)6 continue to be topics for chemical studies. Herein, we describe

the use of chiral, nonracemic N-alkoxyamines in iodine-induced cyclizations of acyclic alkenyl
derivatives for the stereocontrolled construction of hydroxylated trans-2,6-disubstituted piperidines.
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†Dedicated to Dr. Pierre Potier in celebration of his 70th birthday.
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Intramolecular electrophilic cyclizations of olefinic precursors via amidomercuration or
amidohalogenation are well known.7  Amines are seldom used in this fashion owing to their increased

nucleophilicity which leads directly to oxidation.8 Previously, we have shown that N-alkoxyamines
provide for efficient ring closures in the five-exo mode affording pyrrolidines.9 As illustrated in Equation

1, high stereoselectivity may be achieved using Z-alkenes with a consideration for anti addition and

minimization of A(1,3)-strain.10
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To advance this chemistry of the synthesis of piperidines alkaloids, we prepared a series of 1,3-syn- and

1,3-anti-N-benzyloxyamino alcohols (4) and (5) via the development of stereoselective reductions of E-
and Z-oximino ethers with the participation of a proximate hydroxyl group using tetramethylammonium

triacetoxyborohydride (TABH) as summarized below.11

H
N OBn

R1

H
HO

CH3

H

4 5

CH3CN-AcOH
TABH

–20 °C
[Z-oxime]

CH3CN-AcOH
TABH

–20 °C
[E-oxime]

N
OBn

R1

H
HO

CH3

H
N OBn

R1

H
HO

CH3

H

Table 1 summarizes the results of our iodine-induced cyclizations of γ-alkenylamines. General conditions

utilized the dropwise addition of a CH2Cl2 solution of iodine (3 equivs) into a solution of starting N-
alkoxyamine (CH2Cl2) containing a suspension of NaHCO3 (10 equivs) with stirring at 0 °C. The use of

solid NaHCO3 neutralized HI and served to stabilize acid-labile protecting groups. Upon completion,
reactions were quenched by the addition of saturated, aqueous NaHSO3 and diluted with Et2O leading to

the isolation of the desired piperidines in good yields. Crude reaction mixtures were usually cleaned up

by a rapid flash chromatography followed by NMR spectral assessment of diastereomeric mixtures of 2,6-
cis- and 2,6-trans-piperidines.  Subsequently careful chromatography separated pure cis- and trans-

products for individual characterizations.
Cyclization of the amine of Entry 1, bearing a terminal alkene, was initially examined to evaluate the

inherent diastereofacial selectivity.  trans-2,6-Disubstituted piperidine was identified as the major product

(approximately 2:1 trans/cis ratio).  Owing to slow conformational isomerization and nitrogen inversion,
1H NMR spectra of pure trans-2,6-piperidines are characterized by broad, poorly-defined signals for C2

and C6 methine hydrogens, while cis-isomers reveal the expected patterns for 2,6-diequatorial

substitution.  Eliel12 has shown that C2 and C6 carbon resonances of trans-2,6-disubstituted piperidines
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Table 1.  Iodine Cyclizations of N-Alkoxyamines.
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a Ratios were determined by integration of selected 1H NMR signals for product mixtures following silica gel flash
chromatography.  Careful flash silica gel chromatography or preparative TLC led to pure individual diastereomers for
complete characterizations. b Reactions were not optimized: Iodine (3.0 equivs), CH2Cl2, solid NaHCO3 (10 equivs), 0 °C. In
some cases, methylene chloride/ether (2:1 by volume) was used as solvent.  c Reactions were initiated at 0 °C and warmed to
20 °C.
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appear upfield (Δδ ≅ 6.6 ppm) compared to the corresponding signals of cis-isomers.  Additionally, the

C4 carbon signal in trans compounds is also found upfield (Δδ ≅ 5.6 ppm) relative to the cis-isomer.

These trends proved to be diagonistic throughout our series of compounds. The infusion of pure cis-
product into reaction mixtures of Entry 1 failed to provide evidence for thermodynamic control. Thus,

trans:cis ratios reflect products of kinetic nonequilibrating reactions.  Finally, our previous efforts9

leading to N-alkoxy-2,5-pyrrolidines included an X-Ray diffraction study which confirmed the anti-

periplanar addition of nitrogen and iodide.  The results of Table 1 do not suggest evidence of a change in

mechanism.  The incorporation of the β-hydroxyl substituent in Entry 2 coincides with enhanced

production of trans-piperidine, and this trend remains intact throughout the series of starting E-olefins
(Entries 3, 4, 8, 9). On the other hand, the interchange of O-methyl, O-benzyl and O-MOM protection in

the starting hydroxylamines had a negligible effect on the observed stereoselectivity for these reactions.

By comparison, the Z-alkene of Entry 5 led to a reversal of selectivity favoring the cis-isomer. In the case
of the syn-1,3-N-benzyloxyamino alcohol of Entry 6, this was not observed.  Moreover, the anti-isomer

(Entry 7) underwent cyclization less efficiently producing nearly equal amounts of cis- and trans-
product.13  While our preliminary results have established a clear trend for cyclization to trans-2,6-

disubstituted piperidines, the latter examples require further studies and perhaps suggest effects due to

hydrogen bonding, which may lead to conformational preferences in the ring closure event.
Our N-alkoxypiperidines also allow an efficient, stereocontrolled transfer of oxygen along the carbon

skeleton.  For example, protection (MOMCl, (i-C3H9)/NC2H5, DMAP, CH2Cl2, 94%) and SN2 elimination
(KOC(CH3)3, (C2H5)3N, DMF/THF (1:1 by volume) 65%) of the trans-product of Entry 4 gave the E-

alkene (6) (Scheme 1).  Iodine-induced cyclization led to a five-endo ring closure with dealkylation of the

resulting oxonium species and formation of a single isoxazolidine (7) (65%).14  Reduction quantitatively
afforded the syn-1,3-disubstituted isoxazolidine (8) as confirmed by nOe studies.15  Acid hydrolysis and

Scheme 1.
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N–O bond cleavage with zinc in acetic acid gave the piperidine diol (9).  Similarly the isomeric E-alkene
(10) yielded the chiral, nonracemic amino diol (11).  Interestingly, these observations are in contrast to

results obtained from dipolar cycloadditions of cyclic nitrones with terminal olefins, which exclusively
provide bicyclic anti-3,5-disubstituted isoxazolidines, as exemplified by 12.16

Overall, a synthesis strategy has been developed toward piperidine alkaloids, which utilizes nonracemic,

acyclic alcohols as starting precursors for the transmission of functionality and stereochemistry along the
carbon backbone.  Our studies have described iodine-induced cyclizations of acyclic N-alkoxyamines

yielding trans-2,6-disubstituted piperidines as major products.  Dehydrohalogenations permit sequential
iodine cyclizations in the five-endo mode to produce bicyclic syn-3,5-disubstituted isoxazolidines for

reduction to 1,3-syn-amino alcohols.  
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