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Abstract - The synthesis of three new examples of seven-membered ring 

iminoalditols, displaying an extra hydroxymethyl group on the ring compared to 

the previously reported polyhydroxylated azepanes, has been achieved from D-

lyxonolactone. None of them, including the α-D-galacto-like azepane (7), showed 

significant glycosidase inhibition on green coffee bean α-galactosidase and other 

commercially available hydrolases. 
 

INTRODUCTION 
 
The quest for potent and selective glycosidase inhibitors is mainly due to their therapeutic potential1  and 

several glycosidase inhibitors have already been tested or approved in the treatment of diabetes,2  

Gaucher’s desease,3  HIV infection,4  viral infections,5 or cancer.6 These compounds have also been used 

as chemical probes, in combination with protein crystallography and kinetics studies, to provide new 

insights into glycosidase mechanism.7 

Extensive synthetic work  has been achieved to design five- and six-membered ring azasugars,8 including 

deoxynojirimycin (DNJ), deoxymannojirimycin (DMJ), deoxyfuconojirimycin (DFJ) and 2,5-dideoxy-

2,5-imino-D-mannitol (DMDP) (Figure 1) which mimick the ring size of their parent sugar, but only a 

few syntheses of higher homologues with seven-9 or eight-membered rings10 have been reported so far.  
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Figure 1 : Structures of DNJ, DMJ, DFJ and DMDP 

 

As part of an ongoing project on the design of new carbohydrates mimetics, we published  the synthesis 

and biological evaluation of 1,6-dideoxy-1,6-iminoheptitols (1-4).11 Dhivale et al. reported recently the 

synthesis of two other epimers (5-6) (Figure 2).12 

 

Figure 2 : Structure of 1,6-dideoxy-1,6-iminoheptitols synthesized by us (1-4) and Dhivale (5-6) 

 

Unlike previously reported polyhydroxylated azepanes, compounds (1-6) possess an extra hydroxymethyl 

group in order to mimick the parent sugar more closely. These compounds can be considered as higher 

homologues of nojirimycin and insertion of a methylene group between the nitrogen atom and the 

pseudo-anomeric hydroxyl group ensures chemical stability unlike nojirimycin. We anticipated that the 

relative flexibility of such structures associated with the unusual spatial distribution of the hydroxyl 

groups might generate an atypical inhibition profile for these molecules. This was indeed the case and the 

analogue (4), although having an α-D-gluco structure, was found to be a rather potent and selective green 

coffee bean α-galactosidase inhibitor (Ki 2.2 µM). A step further towards the understanding of this 

unexpected inhibition result would be the evaluation of the α-D-galacto-like 1,6-dideoxy-1,6-

iminoheptitol. In this paper we disclose the synthesis and the biological evaluation of three new 1,6-

dideoxy-1,6-iminoheptitols (7, 8, and 9), displaying an α-D-galacto, α-L-allo and β-L-altro configuration 

respectively (Figure 3).  
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Figure 3 : Structure of the synthesized 1,6-dideoxy-1,6-iminoheptitols (7-9) 

 
RESULTS AND DISCUSSION 
 
Our strategy, based on the RCM13 of a suitable iminodiene, is very similar to the one described in our 

previous paper.11 The only modification is the use of D-lyxonolactone as starting material and orthogonal 

protecting groups which should enable us to selectively decorate these azepanes. 

Our synthesis starts from the known and easily available 1,2-O-isopropylidene-D-lyxonolactone (10).14 

Silylation of the primary alcohol and subsequent reduction with DIBAL gave lactol (11) in 87 % yield 

over two steps. Wittig olefination of (11) yielded the acyclic alcohol (12) which was then oxidized to the 

corresponding ketone (13) in 60% over two steps. Reductive amination of the ketone (13) with allylamine 

and acetic acid in the presence of NaBH(OAc)3 gave the D-lyxo (12%) and L-ribo (17%) aminohexenitols 

(14) and (15) (Scheme 1). 
 

 
Conditions : i) TBDMSCl, pyridine, 95% yield then DIBAL-H, toluene, -40°C, 92% yield ; ii) 
Ph3PCH2Br, n-BuLi, THF, 77%  yield ; iii) PCC, 4Å MS, CH2Cl2, 78% yield ; iv) allylamine, AcOH, 
NaBH(OAc)3, 4Å MS, CH2Cl2, 40°C, 52% yield.  

 
Scheme 1 : Synthesis of the aminohexenitols (14-17)  

 
Surprisingly, two other compounds could be isolated and were identified as the D-arabino (16) (18%) and 
L-xylo (17) (6%) aminohexenitols. Compounds (15) and (16) could not be separated at this stage. This 
indicates that epimerisation occured at the 4 position during this reductive amination step. Work is in 
progress to improve the yield of this step and circumvent this problem. 
The secondary amine of the D-lyxo aminodiene (14) was then protected with a Z group in 82% yield to 
afford the carbamate derivative (18), in order to suppress chelation of the amine on the ruthenium of the 
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catalyst in the forthcoming RCM step. Ring closing metathesis of diene (18) proceeded in excellent yield 
to afford azacycloheptene (19) in 99% yield. Dihydroxylation of (19) using OsO4 proceeded smoothly 
and afforded almost exclusively the cis-diol (20) as the main product in 91% yield with only a trace of 
diol (21) (3%). Hydrogenolysis followed by acidic deprotection of compound (20) afforded the 
polyhydroxylated azepane (7) in quantitative yield (Scheme 2). The stereochemistry of compound 7  was 
confirmed by solving the X-Ray structure of its diacetonide derivative (22)(Figure 4) 15 obtained in 51% 
yield from compound (20) along with the fully protected  compound (23) (obtained in 45% yield). 

 
Conditions : i) ZCl, KHCO3, ethyl acetate/water, 82% yield ; ii) first generation Grubbs’ catalyst , DCM, 
1 day, 99% yield ; iii) OsO4, NMO, acetone/water, 94% yield ; iv) H2, 10% Pd/C, AcOH, then 50% aq. 
TFA quant. ; v) 2,2-dimethoxypropane, CSA, acetone. 
 

Scheme 2 : Synthesis of the seven-membered ring iminoheptitol (7)  
 
 

 
 

Figure 4 : X-Ray structure of compound (22) 
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The same sequence was now applied to the L-xylo aminohexenitol (15). Separation of compounds (15) 

and (16) was achieved during the protection of the nitrogen to afford the corresponding carbamates. The 

carbamate of compound (16) with the D-arabino stereochemistry was not further processed. Carbamate 

(24) was subjected to ring closing metathesis to afford azacycloheptene (25) in 97% yield. 

Dihydroxylation of (25) using OsO4 afforded an inseparable mixture of the two cis-diols (26) and (27) in 

96% yield and in a 1/6 ratio respectively. Compounds (26) and (27) were separated as their di-O-

isopropylidene derivatives (28) and (29). Hydrogenolysis of the benzyloxycarbonyl group yielded 

compounds (30) and (31) in quantitative yield. Treatment with aqueous TFA quantitatively afforded the 

polyhydroxylated azepanes (8) and (9) (Scheme 3).  

 
Conditions : i) ZCl, KHCO3, ethyl acetate/water, 93% yield ; ii) first generation Grubbs’ catalyst, DCM, 
45°C, 24 h, 97% yield ; iii) OsO4, NMO, acetone/water, 96% yield ; iv) 2,2-dimethoxypropane, acetone, 
CSA, 90% ; v) H2, 10% Pd/C, AcOH, quant ; vi) 50% aq. TFA, quant.  
 

Scheme 3 : Synthesis of seven-membered ring iminoheptitols (8) and (9) 

 
The stereochemistry of compounds (8) and (9) was deduced from the structure of the diacetonide 

derivative (22) and from their respective NMR spectra. 16 
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INHIBITION ON GLYCOSIDASES 
 
These iminoheptitols have been assayed for their inhibitory activity toward 24 commercially available 

glycosidases.17 They did not inhibit the following enzymes at 1 mM : α-L-fucosidase from bovine 

epididymis, α-galactosidases from Aspergillus niger and E. coli, β-galactosidases from E. coli, α-

glucosidases from yeast and rice, amyloglucosidases from Aspergillus niger and Rhizopus mold, β-

mannosidase from Helix pomatia, β-xylosidase from A. niger, β-N-acetylglucosaminidases from jack 

bean and bovine epididymis A and B. For other enzymes the results are shown in Table 1. 
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NI 
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β-glucosidase 

almonds 

Saccharomyces cerevisiae 

 

 

NI 
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53% 

72% 

 

 

NI 

NI 

 
Table 1 : Inhibitory activity of compounds (7, 8 and 9) 

 

Percentage of inhibition at 1 mM concentration, optimal pH, 35°C, NI = no inhibition at 1 mM 

concentration of the inhibitor 

Compound (7) is a selective albeit weak inhibitor of α-galactosidase from green coffee beans. This a 

surprising result regarding the structure of 7, which mimicks α-D-galactopyranose more closely than the 

potent α-D-gluco analogue (4). Interestingly, a polyhydroxylated azepane (32), analogue of compound 

(7) but lacking the hydroxymethyl group, was previously synthesized by Painter et al.  and shown to be a 
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potent inhibitor of green coffee beans α-galactosidase (Figure 5).9n This means that, in compound (7), 

unlike compound (4), the presence of an hydroxymethyl group appears to be detrimental to the inhibition. 

Compound (8) is a weak and non selective glycosidase inhibitor, inhibiting similarly α-mannosidases, β-

galactosidases and α-glucosidases. Compound (9) behaves as compound (7), displaying a selective but 

weak inhibition on α-galactosidase from coffee beans. These results emphasize the difficulty to predict 

the inhibition profile for this family of compounds adopting unsual conformations. 

 
Figure 5 : Tetrahydroxyazepane (32) synthesized by Painter et al. 

 
 
CONCLUSION 
 
We have synthesized three new seven-membered ring iminoheptitols (7-9) using RCM methodology and 

displaying an α-D-galacto, α-L-allo and β-L-altro configuration respectively. None of them displayed 

significant glycosidase inhibition, especially on green coffee bean α-galactosidase. These data emphasize 

the potent inhibition obtained for the α-D-gluco analog (4) on this enzyme. We recently rationalized this 

result invoking a pseudoaxial orientation of the OH-3 in compound (4) mimicking closely the axial OH-4 

of galactopyranoside.18 A conformational study of compounds (7-9) is underway to provide insights into 

their lack of inhibition. 
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