HETEROCYCLES, Vol. 65, No. 4, 2005, pp. 871 - 877 Received, 6th January, 2005, Accepted, 4th February, 2005, Published online, 4th February, 2005 TWO NEW ISOFLAVONOIDS AND A NEW 2-ARYLBENZOFURAN FROM THE ROOTS OF *ERYTHRINA VARIEGATA*

Hitoshi Tanaka,^{*,a} Masaru Sudo,^a Miyuki Hirata,^a Magoichi Sako,^b Masaru Sato,^c Ih-Sheng Chen,^d and Toshio Fukai^e

^aFaculty of Pharmacy, Meijo University, Yagoto, Tempaku-ku, Nagoya 468-8503, Japan, ^bGifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan, ^cDepartment of Oral Pathology, Asahi University School of Dentistry, 1851-Hozumi, Mizuho, Gifu 501-0296, Japan, ^dSchool of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, *R.O.C.* ^eSchool of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan E-mail address: hitoshi@ccmfs.meijo-u.ac.jp

Abstract – Two new isoflavonoids, eryvarins S (1) and T (2), and a new 2arylbenzofuran, eryvarin U (3), together with nine known compounds, were isolated from the roots of *Erythrina variegata*. Their structures were established on the basis of spectroscopic analysis. Eryvarin U is a rare naturally-occurring 2arylbenzofuran. The antibacterial activity of these three new compounds against 13 strains of methicillin-resistant *Staphylococcus aureus* (MRSA) was examined in which eryvarin U showed the highest antibacterial activity.

INTRODUCTION

Erythrina variegata (Leguminosae) has been used as folk medicine in southern parts of Japan and China,¹ and comprises bioactive secondary metabolites with antimicrobial activity.² We previously reported the isolation of anti-MRSA isoflavonoids (erycristagallin, eryvarin Q and orientanol B) from the roots of this plant collected in Pakistan and Indonesia.^{3,4} In continuation of our screening of anti-MRSA compounds from *Erythrina* plants, we describe the isolation and structural elucidation of a new isoflavone, eryvarin S (1), a new isoflavan, eryvarin T (2), and a new 2-arylbenzofuran, eryvarin U (3), together with nine known isoflavonoids from the roots of Taiwanese *E. variegata*. We also report the antibacterial activities of the new compounds (1–3) against MRSA. The nine known compounds were

identified as auriculatin,⁵ bidwillols A^6 and B,⁶ erystagallin A,⁷ erysubin E,⁸ erythrabyssin II (8),⁹ eryvarin K,¹⁰ phaseollidin⁷ and phaseollin¹¹ by comparing spectroscopic data with those of authentic samples or reported values.

RESULTS AND DISCUSSION

Eryvarin S (1) was assigned a molecular formula of $C_{25}H_{26}O_4$ ([M]⁺ m/z 390.1823) from the HREIMS spectrum. The IR spectrum showed the presence of conjugated carbonyl (1620 cm⁻¹) and hydroxyl (3380 cm⁻¹) groups. The UV spectrum and the typical singlet signal assigned to H-2 (δ 7.97) in the ¹H NMR spectrum revealed that compound (1) is an isoflavone derivative.^{12,13} The ¹H NMR spectrum exhibited a singlet aromatic proton (δ 7.96) and two γ , γ -dimethylallyl (prenyl) groups (δ 1.80, 3.45 and 5.33, and 1.77, 1.86, 3.61 and 5.27), as well as a set of AA'BB'-type aromatic protons (8 6.84 and 7.37) on a 4-hydroxyphenyl group. The placement of one of the prenyl groups at the C-6 position was assigned by NOESY experiment which revealed NOE interactions between H-1"/H-5 and H-2"/H-5 (H-5 was assigned with the HMBC spectrum; the cross-peak between H-5 and C-4). Further support for the assignment of the prenyl group at the C-6 position was obtained from the HMBC spectrum which indicated correlations between H-1"/C-5, H-1"/C-6, H-1"/C-7 and H-5/C-1". The other prenyl group was located at the C-8 position as showed from the HMBC spectrum, indicating correlations between H-1"'/C-7, H-1"'/C-8 and H-1"'/C-9. Therefore, the structure of eryvarin S is represented by 1. Eryvarin T (2) was obtained in racemic form and its molecular formula was determined as $C_{17}H_{18}O_5$ $([M]^+ m/z 302.1161)$ from the HREIMS spectrum. This compound was found to be an isoflavan on the basis of its characteristic spectral data: λ_{max} 230 and 289 nm in the UV spectrum and a set of aliphatic proton signals (§ 2.77, 2.96, 3.47, 3.96 and 4.17) in the ¹H NMR spectrum. ¹⁴ The ¹H NMR spectrum showed three aromatic protons in an AMX system (δ 6.28, 6.36 and 6.89), and two singlet aromatic protons (\$ 6.57 and 6.85) and two methoxyl groups (\$ 3.77 and 3.78) on a 1,2,4,5-tetrasubstituted benzene moiety. The placement of the C-5 position in the AMX-type was confirmed from both the

Table 1. C INVIX spectral data for $1-3$				-
position	1 ^a	2 ^b	3 ^a	HMBC spectrum (correlations: H-5/C-4, H-5/C-9 and H-
2	152.3	70.6	151.7	5/C-7). The positions of the methoxyl groups at the C-2'
3	124.5	32.5	103.5	and C-5' were assigned from the NOESY spectrum which
4	176.8	31.3	120.9	displayed NOE interactions between OMe-2'/H-3' and
5	124.4	131.0	111.7	$C_{\rm M}$
6	126.3	108.7	153.3	OMe-5/H-6. The further assignments of the methoxyl
7	157.7	157.4	98.0	groups were obtained by the HMBC experiment,
8	114.6	103.6	154.7	revealing correlations between OMe-2'/C-2' and OMe-
9	154.2	156.1	123.5	5'/C-5'. The attachment of the B-ring to the isoflavan
10	118.0	114.3		mojety at the C-3 position was established from both the
1'	124.0	120.6	116.7	NOESN 14 CHOE : () H CHI 2 1 H CHI
2'	130.3	152.9	153.1	NOESY data (NOE interactions: H-6/H-2a and H-6/H-
3'	115.7	101.0	115.4	4a) and the HMBC experiment (correlation: H-6 ['] /C-3).
4'	155.9	146.9	154.1	Therefore, the structure of eryvarin T is represented by 2 .
5'	115.7	142.2	112.9	Ervyarin U (3) was assigned a molecular formula of
6'	130.3	113.0	127.1	$C_{1}H_{1}O_{2}$ ([M] ⁺ m/z 222 1214) from the HPEIMS
1"	29.8			$C_{20}H_{18}O_4$ ([M] $m/2$ 522.1214) from the fixed method
2"	121.0		76.3	spectrum. This compound was found to be a 2-
3"	135.8		130.8	arylbenzofuran derivative on the basis of the UV spectral
4"	18.0		116.8	data and the characteristic olefinic proton signal (δ 7.10)
5"	25.9		27.9	in the ¹ U NMD supertrain ^{15,16} The ¹ U NMD supertrain
6"			27.9	In the H NMR spectrum. The H NMR spectrum
1'''	22.3			showed three aromatic protons in an AMX system (\delta
2'''	120.7			6.76, 6.99 and 7.40), a set of ortho-coupled aromatic
3'"	135.1			protons (δ 6 69 and 7 71) and a methoxyl group (δ 3 78)
4'''	18.0			
5'''	25.8			as well as two methyl groups (δ 1.46) and two olefinic
2'-OMe		56.4	61.1	protons (& 5.70 and 6.68) on a 2,2-dimethylpyran ring.
5'-OMe		57.3		- The location of the C-4 position in the AMX-type was
	-			

Table 1 ¹³C NIMD anastrol data for 1 - 2

-	
3 ^a	HMBC spectrum (correlations: H-5/C-4, H-5/C-9 and H-
151.7	5/C-7). The positions of the methoxyl groups at the C-2'
103.5	and C-5' were assigned from the NOESY spectrum which
120.9	displayed NOE interactions between OMe-2'/H-3' and
111.7	OMe-5'/H-6' The further assignments of the methoxyl
153.3	source static design the state state in the interiory
98.0	groups were obtained by the HMBC experiment,
154.7	revealing correlations between OMe-2'/C-2' and OMe-
123.5	5'/C-5'. The attachment of the B-ring to the isoflavan
116.7	moiety at the C-3 position was established from both the
153.1	NOESY data (NOE interactions: H-6'/H-2a and H-6'/H-
115.4	4a) and the HMBC experiment (correlation: H-6'/C-3).
154.1	Therefore, the structure of eryvarin T is represented by 2 .
112.9	Eryvarin U (3) was assigned a molecular formula of
127.1	$C_{20}H_{18}O_4$ ([M] ⁺ <i>m/z</i> 322.1214) from the HREIMS
76.3	spectrum. This compound was found to be a 2-
130.8	arylbenzofuran derivative on the basis of the UV spectral
116.8	data and the characteristic olefinic proton signal (δ 7 10)
27.9	
27.9	in the ¹ H NMR spectrum. ^{13,10} The ¹ H NMR spectrum
	showed three aromatic protons in an AMX system (δ
	6.76, 6.99 and 7.40), a set of ortho-coupled aromatic
	protons (δ 6.69 and 7.71) and a methoxyl group (δ 3.78),

NOESY data (NOE interaction: H-5/H-4b) and the

determined from the HMBC spectrum which displayed

a: CDCl₃. b: acetone- d_6 .

correlations between H-4/C-3 and H-4/C-8. The assignment of the methoxyl group at the C-2' position was confirmed from both the NOESY spectrum (NOE interactions: MeO-2'/H-4" and MeO-2'/H-3) and the HMBC spectrum (correlation: MeO-2'/C-2'). The presence of the 2,2-dimethylpyran moiety was evidenced from the EIMS spectrum that revealed the characteristic fragment ion at m/z 307 [M-CH₃]^{+,17} The placement of the 2,2-dimethylpyran moiety fused to the C-3' and C-4' positions was decided from the HMBC spectrum, indicating correlations between H-3"/C-3' and H-5'/C-4'. Therefore, the structure of eryvarin U is represented by **3**.

Antibacterial activity of the three new compounds (1-3) against 13 strains of MRSA was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The MIC and MBC were determined by a broth dilution method as previously reported.⁴ Eryvarin U inhibited the growth of MRSA strains with MIC values of $6.25-12.5 \ \mu g \ mL^{-1}$, and both MIC₅₀ and MIC₉₀ (minimum concentration needed to inhibit the growth of 50% and 90% of the tested strains, respectively) were 6.25 µg mL⁻¹. Eryvarin S also showed growth inhibitory potency (MIC values of 6.25–25 μ g mL⁻¹), but failed to inhibit 2 strains at 25 μ g mL⁻¹ (the maximum concentration in the present study). Eryvarin T did not show anti-MRSA activity at 25 µg mL⁻¹. The MIC values of mupirocin, an authentic antibiotic for MRSA, against tested strains ranged from 0.20 to 3.13 μ g mL⁻¹ (MIC₅₀ and MIC₉₀: both 0.39 μ g mL⁻¹). Although the growth inhibitory potency of eryvarin U was lower than that of mupirocin, it inhibited the recovery of MRSA cells at $6.25-12.5 \ \mu g \ mL^{-1}$ (MBC₅₀: 12.5 μ g mL⁻¹). This value was lower than that of mupirocin (MBC₅₀: 25 μ g mL⁻¹). Thus, eryvarin U was revealed to have strong bactericidal potency against MRSA. The high bactericidal activity of eryvarin U is expected to have a great advantage in treating MRSA infections, because it would reduce a risk of development of resistant mutants. The new arylbenzofuran could be a potent leading compound for the development of phytotherapeutic agents against MRSA infections.

EXPERIMENTAL

General Experimental Procedures. Optical rotation was measured using a JASCO DIP-370 digital polarimeter, and CD spectrum was recorded on a JASCO J-725 spectropolarimeter. IR spectra were recorded on a JASCO IR-810 spectrophotometer, and UV spectra were obtained in MeOH using a Beckman DU-530 spectrophotometer. MS spectra were obtained using a JEOL JMS-SX102A spectrometer. ¹H and ¹³C NMR spectra were measured on a JEOL ALPHA-600 MHz spectrometer. The ¹H and ¹³C NMR (Table 1) signals of the compounds (**1–3**) were assigned based on the ¹H-¹H COSY, NOESY, HSQC and HMBC spectra. Column chromatography was performed using Merck silica gel (230–400 mesh). The procedure for the MIC and MBC measurement has been described in a previous publication.⁴

Plant material. The roots of *E. variegata* were collected in Kaohsiung, Taiwan, R.O.C. in November 2001. A voucher specimen (No. 011130) was deposited at the Department of Natural Product Chemistry in the Faculty of Pharmacy, Meijo University.

Extraction and isolation. The finely powdered roots (3.19 kg) were macerated with acetone (73 L) at 23 °C for 48 h (2 times) and the solvent was removed to give a residue that was divided into n-

hexane-, CH₂Cl₂-, and EtOAc-soluble fractions. The CH₂Cl₂-soluble fraction (228.4 g) was applied to silica gel column first eluted with CHCl₃-acetone (40 : 1 \rightarrow 10 : 1.5 \rightarrow 3 : 1 \rightarrow 1 : 1) and acetone (each volume; 3 L, Column A) to afford 7 fractions. Fraction A3 (27.7 g) was subjected to silica gel column chromatography using CHCl₃-acetone (40 : 1 \rightarrow 20 : 1) (each volume; 200 mL, Column B) to yield 24 fractions. Fraction B7 (1.93 g) was separated by silica gel column chromatography successively using *n*-hexane-acetone (5 : 1) and benzene-EtOAc (80 : 1) to furnish eryvarin U (3) (2.2) mg) and phaseollin (4.1 mg). Fraction B14 (1.51 g) was subjected to silica gel column chromatography successively using benzene-EtOAc (10:1) and *n*-hexane-acetone (2:1) to provide bidwillol A (314 mg), erythrabyssin II (264 mg) and eryvarin K (22 mg). Fraction B20 (845 mg) was purified by repeated silica gel column chromatography using *n*-hexane-acetone (2.5 : 1) to give auriculatin (33 mg). Fractions B22-24 (1.62 g) were separated by silica gel column chromatography successively using *n*-hexane-acetone (3:1) and benzene-EtOAc (10:1) to afford bidwillol B (51 mg), eryvarin S (1) (7.2 mg) and phaseollidin (83 mg). Fraction A4 (70.4 g) was applied to silica gel column chromatography using CHCl₃-acetone (10 : 1.5 \rightarrow 1 : 1) and acetone (each volume; 500 mL, Column C) to yield 21 fractions. Fraction C5 (1.28 g) was separated by silica gel column chromatography successively using *n*-hexane-acetone (2.5 : 1 \rightarrow 1.5 : 1) and benzene-EtOAc (20 : 1 \rightarrow 3 : 1) to furnish bidwillol A (24 mg) and bidwillol B (4.7 mg). Fractions C6 and C7 (8.72 g) were applied to silica gel column chromatography successively using benzene-EtOAc (5 : 1 \rightarrow 3 : 1) (each volume; 40 mL, Column D) to provide 40 fractions. Fractions D5-10 (3.38 g) were separated by silica gel column chromatography successively using *n*-hexane-acetone (1.5:1) and benzene-EtOAc (10:1) \rightarrow 5 : 1) to give auriculatin (34 mg), erystagallin A (41 mg) and erysubin E (24 mg). Fractions D11-18 (2.58 g) were purified by silica gel column chromatography successively using *n*-hexane-acetone $(3:1 \rightarrow 5:1)$ and benzene-EtOAc (10:1) to afford eryvarin T (2) (8.6 mg).

Eryvarin S (1). Amorphous powder; IR (film) v_{max} cm⁻¹: 3380, 1620; UV λ_{max} nm (log ε): 205 (4.62), 255 (4.46), 309 (3.97); EIMS *m/z* (rel. int.): 390 ([M]⁺, 100), 373 (24), 347 (16), 335 (47), 319 (72), 291 (21), 279 (29); HREIMS *m/z*: 390.1823 (M⁺, Calcd for C₂₅H₂₆O₄, 390.1830); ¹H NMR (CDCl₃): δ 1.77 (3H, s, H-5'''), 1.80 (6H, s, H-4'' and H-5''), 1.86 (3H, s, H-4'''), 3.45 (2H, d, *J* = 7.3 Hz, H-1''), 3.61 (2H, d, *J* = 7.3 Hz, H-1'''), 5.27 (1H, t, *J* = 7.3 Hz, H-2'''), 5.33 (1H, t, *J* = 7.3 Hz, H-1'''), 5.97 (1H, br s, OH), 6.18 (1H, s, OH), 6.84 (2H, d, *J* = 8.8 Hz, H-3' and H-5'), 7.37 (2H, d, *J* = 8.8 Hz, H-2' and H-6'), 7.96 (1H, s, H-5), 7.97 (1H, s, H-2); ¹³C NMR: see Table 1.

Eryvarin T (2). Amorphous powder; $[\alpha]_D \pm 0^\circ$; CD (MeOH; *c* 2.32 x 10⁻⁵): no Cotton effect; IR (film) v_{max} cm⁻¹: 3420; UV λ_{max} nm (log ε): 205 (4.66), 230 (sh, 4.11), 289 (3.87), 320 (3.43); EIMS

m/z (rel. int.): 302 ([M]⁺, 68), 180 (100), 167 (46), 165 (46), 137 (17), 122 (6); HREIMS *m/z*: 302.1161 (M⁺, Calcd for C₁₇H₁₈O₅, 302.1153); ¹H NMR (acetone-*d*₆): δ 2.77 (1H, ddd, *J* = 15.6, 5.4, 2.0 Hz, H-4b), 2.96 (1H, dd, *J* = 15.6, 11.2 Hz, H-4a), 3.47 (1H, m, H-3), 3.77 (3H, s, OMe-5'), 3.78 (3H, s, OMe-2'), 3.96 (1H, t-like, *J* = 10.3 Hz, H-2a), 4.17 (1H, ddd, *J* = 10.3, 3.4, 2.0 Hz, H-2b), 6.28 (1H, d, *J* = 2.4 Hz, H-8), 6.36 (1H, dd, *J* = 8.1, 2.4 Hz, H-6), 6.57 (1H, s, H-3'), 6.85 (1H, s, H-6'), 6.89 (1H, d, *J* = 8.1 Hz, H-5), 7.54 (1H, s, OH), 8.07 (1H, br s, OH); ¹³C NMR: see Table 1.

Eryvarin U (3). Amorphous powder; IR (film) v_{max} cm⁻¹: 3420, 1630; UV λ_{max} nm (log ε): 214 (sh, 4.02), 236 (4.17), 273 (4.15), 319 (4.31), 329 (sh, 4.27); EIMS *m/z* (rel. int.): 322 ([M]⁺, 62), 307 (100), 292 (66); HREIMS *m/z*: 322.1214 (M⁺, Calcd for C₂₀H₁₈O₄, 322.1204); ¹H NMR (CDCl₃): δ 1.46 (6H, s, H-5" and H-6"), 3.78 (3H, s, OMe-2'), 5.70 (1H, d, *J* = 10.3 Hz, H-3"), 6.68 (1H, d, *J* = 10.3 Hz, H-4"), 6.69 (1H, d, *J* = 8.8 Hz, H-5'), 6.76 (1H, dd, *J* = 8.1, 2.2 Hz, H-5), 6.99 (1H, d, *J* = 2.2 Hz, H-7), 7.10 (1H, s, H-3), 7.40 (1H, d, *J* = 8.1 Hz, H-4), 7.71 (1H, d, *J* = 8.8 Hz, H-6'); ¹³C NMR: see Table 1.

REFERENCES

- 'Dictionary of Chinese Herbal Medicine', ed. Jiangsu New Medical College, Shanghai People's Press, Shanghai, 1977, p. 1941.
- 2. L. A. Mitscher, S. Drake, S. R. Gollapudi, and S. K. Okwute, J. Nat. Prod., 1987, 50, 1025.
- 3. H. Tanaka, M. Sato, S. Fujiwara, M. Hirata, H. Etoh, and H. Takeuchi, *Lett. Appl. Microbiol.*, 2002, **35**, 494.
- 4. H. Tanaka, M. Hirata, H. Etoh, M. Sako, M. Sato, J. Murata, H. Murata, D. Darnaedi, and T. Fukai, *Chem. Biodiv.*, 2004, **1**, 1101.
- K. V. S. Raju, G. Srimannarayana, B. Ternai, R. Stanley, and K. R. Markham, *Tetrahedron*, 1981, 37, 957.
- 6. M. Iinuma, Y. Okawa, T. Tanaka, Y. Kobayashi, and K. Miyauchi, *Heterocycles*, 1994, **39**, 687.
- 7. H. Tanaka, T. Tanaka, and H. Etoh, *Phytochemistry*, 1997, 45, 835.
- 8. H. Tanaka, H. Etoh, N. Watanabe, H. Shimizu, M. Ahmad, and G. H. Rizwani, *Phytochemistry*, 2001, **56**, 769.
- 9. V. S. Kamat, F. Y. Chuo, I. Kubo, and K. Nakanishi, *Heterocycles*, 1981, 15, 1163.
- H. Tanaka, M. Hirata, H. Etoh, M. Sako, M. Sato, J. Murata, H. Murata, D. Darnaedi, and T. Fukai, *Heterocycles*, 2003, 60, 2767.
- 11. D. R. Perrin, C. P. Whittle, and T. J. Batterham, Tetrahedron Lett., 1972, 1673.
- 12. K. R. Markham and T. J. Mabry, Ultraviolet-visible and Proton Magnetic Resonance Spectroscopy of Flavonoids, in *The Flavonoids*. ed. by J. B. Harborne, T. J. Mabry, and H.

Mabry, Chapman and Hall, London, 1975, pp. 45-77.

- 13. H. Tanaka, T. Tanaka, H. Etoh, N. Watanabe, M. Ahmad, I. Qurashi, and M. R. Khan, *Heterocycles*, 1998, **48**, 2661.
- 14. H. Tanaka, T. Oh-Uchi, H. Etoh, M. Sako, F. Asai, T. Fukai, M. Sato, J. Murata, and Y. Tateishi, *Phytochemistry*, 2003, **64**, 753.
- 15. P. M. Dewick, Isoflavonoids, in *The Flavonoids: Advances in Research*. ed. by J. B. Harborne and T. J. Mabry, Chapman and Hall, London, 1982, p. 537.
- S. Demizu, K. Kajiyama, K. Takahashi, Y. Hiraga, S. Yamamoto, Y. Tamura, K. Okada, and T. Kinoshita, *Chem. Pharm. Bull.*, 1988, 36, 3474.
- 17. M. Takayama, T. Fukai, Y. Hano, and T. Nomura, *Heterocycles*, 1992, 33, 405.