HETEROCYCLES, Vol. 65, No. 1, 2005, pp. 195 - 204 Received, 3rd September, 2004, Accepted, 18th October, 2004, Published online, 19th October, 2004

SURVEY OF BRIARANE-RELATED DITERPENOIDS-PART II

Ping-Jyun Sung,^{a,*} Pi-Chen Chang,^{a,b} Lee-Shing Fang,^a Jyh-Horng Sheu,^c Wei-Chen Chen,^{a,c} Yu-Pei Chen,^{a,c} and Mei-Ru Lin^a

^aNational Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung 944, Taiwan, R.O.C. E-mail: pjsung@nmmba.gov.tw

^bKaohsiung Municipal Kaohsiung Girls' High School, Kaohsiung 801, Taiwan, R.O.C.

^cDepartment of Marine Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C.

Abstract – The structures, names, biological activity, and references of sixty-six new briarane-related diterpenoids are described in this mini-review. All briaranes are obtained from Gorgonacea (genus *Briareum*, *Erythropodium*, *Ellisella*, and *Junceella*) and Pennatulacea (genus *Cavernularia* and *Pteroeides*). Some of these natural products showed potential biological activity.

1. INTRODUCTION

In the past three years,¹ sixty-six new briarane-related natural products, which most are characterized by the presence of a γ -lactone fused to a bicyclo[8.4.0] ring system, were isolated from various octocorals, mainly including the gorgonian corals *Briareum asbestinum*, *B. excavatum*, *B. stechei*, *Junceella fragilis*, *J. juncea*, *Erythropodium caribaeorum* and the sea pen corals identified as *Cavernularia* sp. and *Pteroeides* sp., respectively. Some of these compounds showed interesting biological activity, such as cytotoxicity and reversal of multidrug resistance. This survey of briarane-related compounds will be presented taxonomically according to genus and species.

2. GORGONACEA

2.1. Briareum (family Briareidae)

A. Briareum asbestinum

Gorgonian corals of the genus *Briareum*, which are distributed extensively on West Indian waters and the subtropical and tropical waters of Indo-Pacific Ocean, have been investigated and yielded a number of secondary metabolites, including pyranone, briarane, eunicellin, cembrane-type compounds and the marine toxin, palytoxin.^{1,2} In the continuing research on the Caribbean gorgonian corals, the coral *B. asbestinum*,

collected at Sweetings Cay in the Bahamas were studied, and six novel metabolites, including a C20-rearranged briarane possessing tricyclo[$8.4.0.0^{3.6}$]tetradec-4-ene ring system, cyclobutenbriarein A (1), and five briaranes, 11-hydroxybrianthein V (2), 11-hydroxybrianthein U (3), 11-hydroxybrianthein Y (4), 3,4-dihydro-11-hydroxybrianthein V (5), and 3,4-dihydro-11-hydroxybrianthein U (6), were isolated. The structures of metabolites (1-6) were elucidated by extensive spectroscopic methods (IR, MS, ¹H, and ¹³C NMR spectrum). The stereostructure, including the absolute configuration, of 11-hydroxybrianthein V (2) was further confirmed by X-Ray analysis. It is important to note that cyclobutenbriarein A (1) is the first natural product possessing a tricyclo[8.4.0.0^{3,6}]tetradec-4-ene ring system.³

Table 1. The Briarane-Related Metabolites from B. asbestin	um
--	----

Structure	No.	Name	Ref.
$CH_{3}(CH_{2})_{2}CO \overset{O}{\overset{(1)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	1	cyclobutenbriarein A	3
$R_{2}^{(1)} \xrightarrow{H_{1}}{} R_{1}^{(1)} \xrightarrow{H_{2}}{} R_{2}^{(1)} \xrightarrow{H_{1}}{} R_{2}^{(1)} \xrightarrow{H_{2}}{} R_{2}^{(1)} \xrightarrow{H_{1}}{} R_{2}^{(1)} \xrightarrow{H_{2}}{} R_{2}^{(1)} \xrightarrow{H_{2}}$	2	11-hydroxybrianthein V ($R_1 = R_2 = OCO(CH_2)_2CH_3$)	3
	3	11-hydroxybrianthein U ($R_1 = OAc$, $R_2 = OCO(CH_2)_2CH_3$)	3
	4	11-hydroxybrianthein Y ($R_1 = OCO(CH_2)_2CH_3$, $R_2 = OAc$)	3
$CH_3(CH_2)_2CO^{(1)}$, HO	5	3,4-dihydro-11-hydroxybrianthein V ($R = OCO(CH_2)_2CH_3$)	3
$AcO_{(1)}$, O	6	3,4-dihydro-11-hydroxybrianthein U ($R = OAc$)	3

B. Briareum excavatum

Eight new briaranes, briaexcavatolides S-Z (7–14), were obtained from the Taiwanese gorgonian coral B. excavatum. The relative stereostructures of these metabolites were established by the interpretations of spectral data analysis (IR, UV, MS, ¹H, and ¹³C NMR spectrum).^{4–6} The configuration of briaexcavatolide X (12) was further confirmed by minimum molecular mechanics calculations.⁶ It has to be noted that a briarane containing a six-membered ring with an α -hydroxy- α , β -unsaturated ketone functional group, as presented in **12**, is unprecedential.⁶

Tuble 2. The Dilutune Type Metuoontes nom D. executation	Table 2	2. The	Briarane-	Type	Metabolites	from	В.	excavatum
---	---------	--------	-----------	------	-------------	------	----	-----------

C. Briareum stechei

Twelve new briarane-type metabolites, including milolides G–N (**15–22**), 16-acetoxymilolide G (**23**), 16-hydroxymilolide M (**24**), 16-acetoxymilolide M (**25**), and 16-acetoxymilolide N (**26**), were obtained from the Western Pacific Ocean gorgonian *B. stechei*, collected at Mil Channel, Yap, Federated States of Micronesia. The relative stereostructures of briaranes (**15–26**) were established by spectral data (MS, ¹H, and ¹³C NMR spectrum).⁷

milolide G ($R_1 = R_3 = OAc$, $R_2 = CH_3$, $R_4 = \beta$ -OH) milolide H ($R_1 = H$, $R_2 = CH_2OAc$, $R_3 = OH$, $R_4 = \alpha$ -OAc)	7
milolide I ($R_1 = H$, $R_2 = COOCH_3$, $R_3 = OAc$, $R_4 = \beta$ -OH) milolide J ($R_1 = R_3 = OAc$, $R_2 = COOCH_3$, $R_4 = \beta$ -OH) 16-acetoxymilolide G ($R_1 = R_3 = OAc$, $R_2 = CH_2OAc$, $R_4 = \beta$ -OH)	7 7 7 7
milolide K ($R_1 = H$, $R_2 = CH_2OAc$, $R_3 = OH$) milolide L ($R_1 = H$, $R_2 = CH_2Cl$, $R_3 = OH$) milolide M ($R_1 = R_3 = OAc$, $R_2 = CH_3$,) milolide N ($R_1 = OCO(CH_2)_2CH_3$, $R_2 = CH_3$, $R_3 = OAc$) 16-hydroxymilolide M ($R_1 = R_3 = OAc$, $R_2 = CH_2OH$) 16-acetoxymilolide M ($R_1 = R_3 = OAc$, $R_2 = CH_2OAc$) 16 acetoxymilolide M ($R_1 = R_3 = OAc$, $R_2 = CH_2OAc$)	7 7 7 7 7 7
	miloide H ($R_1 = H$, $R_2 = CH_2OAC$, $R_3 = OH$, $R_4 = \alpha$ -OAC) milolide I ($R_1 = H$, $R_2 = COOCH_3$, $R_3 = OAc$, $R_4 = \beta$ -OH) milolide J ($R_1 = R_3 = OAc$, $R_2 = COOCH_3$, $R_4 = \beta$ -OH) 16-acetoxymilolide G ($R_1 = R_3 = OAc$, $R_2 = CH_2OAc$, $R_4 = \beta$ -OH) milolide K ($R_1 = H$, $R_2 = CH_2OAc$, $R_3 = OH$) milolide L ($R_1 = H$, $R_2 = CH_2Cl$, $R_3 = OH$) milolide M ($R_1 = R_3 = OAc$, $R_2 = CH_3$,) milolide N ($R_1 = OCO(CH_2)_2CH_3$, $R_2 = CH_3$, $R_3 = OAc$) 16-hydroxymilolide M ($R_1 = R_3 = OAc$, $R_2 = CH_2OH$) 16-acetoxymilolide M ($R_1 = R_3 = OAc$, $R_2 = CH_2OAc$) 16-acetoxymilolide M ($R_1 = R_3 = OAc$, $R_2 = CH_2OAc$)

Table 3. The Briarane-Type Metabolites from B. stechei

D. Briareum sp.

The chemical constituents of a gorgonian coral belonging to the genus *Briareum*, collected at Amami Island, Kagoshima Prefecture, Japan, were studied. Eight new briaranes, which are designated as briarlides A–H (27–34), were obtained from this organism. The relative stereostructures of briaranes (27–34) were determined by the interpretation of spectral data analysis (IR, MS, ¹H, and ¹³C NMR spectrum). All briaranes (27–34) possess a double bond between C-13 and C-14. The cytotoxicity and structure activity relationships of briarlides A–H (27–34) toward the African green monkey kidney (Vero) and Madin-Daby Canine Kidney (MDCK) cells are described in the literature.⁸

Table 4. The Briarane-Type Metabolites from Briareum sp.

Structure	No.	Name	Biological Activity	Ref.
	27	briarlide A ($R_1 = R_2 = R_3 = R_4 = OAc$)	CC_{50} (Vero, MDCK) = 2.07, 4.74 µg/mL	8
\mathbf{R} , \mathbf{R}_2 \mathbf{R}_2	28	briarlide B ($R_1 = R_3 = R_4 = OAc, R_2 = OH$)	CC_{50} (Vero, MDCK) = 18.9, 15.4 µg/mL	8
$\prod_{i=1}^{n_1}$	29	briarlide C ($\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{OH}, \mathbf{R}_3 = \mathbf{R}_4 = \mathbf{OAc}$)	CC_{50} (Vero, MDCK) = 62.1, 38.6 µg/mL	8
	30	briarlide D ($R_1 = R_4 = OAc, R_2 = OH, R_3 =$	CC_{50} (Vero, MDCK) = 2.26, 2.49 µg/mL	8
		$OCO(CH_2)_6CH_3)$		
R4	31	briarlide E ($R_1 = R_4 = OAc, R_2 = OH, R_3 =$	CC_{50} (Vero, MDCK) = 4.24, 4.91 µg/mL	8
HO ACO COO		$OCO(CH_2)_4CH_3)$		
ALO T	32	briarlide F ($R_1 = R_4 = OAc, R_2 =$	CC_{50} (Vero, MDCK) = 4.26, 3.49 µg/mL	8
0		$OCO(CH_2)_6CH_3, R_3 = OH)$		
	33	briarlide G $(R_1 = R_2 = R_4 = OAc, R_3 = H)$	CC_{50} (Vero, MDCK) = 22.2, 67.1 µg/mL	8
	34	briarlide H ($R_1 = R_4 = OH, R_2 = OAc, R_3 = H$)	CC_{50} (Vero, MDCK) = > 100, > 100 µg/mI	- 8

2.2. Erythropodium (family Briareidae)

A. Erythropodium caribaeorum

In the continuing researches for *E. caribaeorum*, a series of novel briarane-related metabolies, including erythrolides K–Q,⁹ erythrolides R–V (**35–39**),¹⁰ and aquariolides A–C (**40–42**),^{10,11} have been isolated from *E. caribaeorum*, collected in Dominica. The structures of metabolites (**35–42**) were elucidated by extensive spectral analysis (IR, UV, MS, ¹H, and ¹³C NMR spectrum). In addition, the structure and absolute configuration of erythrolide S (**36**), were determined by chemical transformation. This metabolite is also the first briarane derivative to bear a 3-hydroxybutanoyl substituent. Erythrolide T (**37**) is the first erythrolide to possess a 2,3-epoxy and an acetoxyl functionality at C-4, respectively.

The biosynthetic pathway of the metabolites such as aquariolides A–C (**40–42**), which possess the auqariane skeleton, can be formally derived from the briarane skeleton by sequential di- π -methane and vinyl-cyclopropane rearrangements.¹¹ Aquariolides B (**41**) and C (**42**) showed intermediate activity toward MCF-7 (human breast cancer) cells.¹⁰ Due to all the erythrolide and aquariolide metabolites are only found in the Caribbean gorgonian coral *E. caribaeorum* and on basis of the special structural features of the compounds of these two types, the erythrolide and aquariolide derivatives may well be chemotaxonomic markers for *E. caribaeorum*.^{1,9–11}

Structure	No.	Name	Ref.
OAc OAc OAc OAc HOW HOW HOW O	35	erythrolide R	10
$AcO \xrightarrow{O} OAc \xrightarrow{O} OCCH_2CHCH_3$ $AcO \xrightarrow{HO} OCCH_2CHCH_3$ $AcO \xrightarrow{HO} OCCH_2CHCH_3$ $AcO \xrightarrow{HO} OCCH_2CHCH_3$ $OCCH_3$ $OCCH_3$ $OCCH_4$ O	36	erythrolide S	10
$\begin{array}{c} H O H R_{1} \\ H O H R_{2} \\ H O H R_{$	37 38	erythrolide T ($R_1 = R_2 = OAc$) erythrolide U ($R_1 = H$, $R_2 = OCOCH_2OH$)	10 10
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 12 \\ 110 \\ 14 \\ 12 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	39	erythrolide V	10
$H_{13}^{1} \xrightarrow{2}{15^{4}} H_{15}^{10} OAc$ $H_{13}^{11} \xrightarrow{15^{4}}{15^{4}} \xrightarrow{16^{16}}{16^{16}} H_{20}^{11} \xrightarrow{10^{16}}{16^{16}} H_{20}^{11} \xrightarrow{10^{16}}{16^{16}} H_{20}^{11} \xrightarrow{10^{16}}{17^{16}} H_{20}^{11} \xrightarrow{10^{16}}{18^{16}} $	40 41 42	aquariolide A (R = OH) aquariolide B (R = OCH ₃) aquariolide C (R = OAc)	11 10 10

Table 5. The Briarane-Related Metabolites from E. caribaeorum

2.3. *Ellisella* (family Ellisellidae)

A. Ellisella sp.

The investigation on the chemical constituents of a gorgonian coral belonging to the genus Ellisella, collected in Okinawa, Japan, has afforded four unnamed new briaranes (43-46). The relative stereostructures of briaranes (43-46) were elucidated by analysis of spectral data (IR, MS, ¹H, and ¹³C NMR spectrum). Briarane (44) is the first briarane metabolite possessing a 20-acetoxyl group. Briaranes (44 and 45) showed activity to inhibit the formation of cytokinesis on NBT-II cells.¹²

Table 6. The Briarane-Type Metabolites from *Ellisella* sp.

Structure	No.	Biological Activity	Ref.
AcO ^{1,11} HO HO AcO AcO _{1,1} ,11	44	inhibited cytokinesis, causing multinuclei formation on NBT-II cells at 0.5 μg/mL	12
AcO B HO Cl AcO Cl	45	inhibited cytokinesis, causing multinuclei formation on NBT-II cells at 2 μ g/mL	12
AcQ S HQ Cl AcQ Cl AcQ Cl	46		12

2.4. Junceella (family Ellisellidae)

A. Junceella fragilis

Three new briaranes, 9-*O*-deacetylumbraculolide A (**47**),¹³ junceellolide H (**48**),¹⁴ fragilide A (**49**),¹⁵ and two known metabolites, praelolide and junceellin,^{14,16} were isolated from the gorgonian coral, *Junceella fragilis*, collected off the southern Taiwan coast. The relative stereostructures of the new metabolites (**47–49**), were elucidated by extensive spectroscopic methods (IR, Ms, ¹H, and ¹³C NMR spectrum), particularly in 2D NMR studies. Fragilide A (**49**) is the first briarane derivative possessing a 6-hydroxyl group.¹⁵

Table 7. The Briarane-Type M	Metabolites from J.	fragilis
------------------------------	---------------------	----------

Structure	No.	Name	Ref.
Aco HO HO HO	47	9- <i>O</i> -deacetylumbraculolide A	13
HO HO HO HO O	48	junceellolide H	14
HO HO ACO OAC	49	fragilide A	15

B. Junceella juncea

In addition to *J. fragilis*, *J. junea* also is a species distributed extensively on the Indo-Pacific Ocean. Thirteen briaranes, including eleven new metabolites, juncenolide B (50),^{17,18} juncenolides B–E (51–54),^{18–20} and juncins I–N (55–60),^{21,22} along with two known diterpenoids junceellin and praelolide,¹⁶ were obtained from the gorgonian coral *J. juncea*, collected off Indian Ocean (briaranes 50 and 55–59) and southern Taiwan coast (briaranes 51–54 and 60), respectively. The relative stereostructures of briaranes (50–60) were determined by extensive spectral data analysis (IR, UV, MS, ¹H, and ¹³C NMR spectrum). Juncin N (60) is the first briarane metabolite containing a carboxyl acid group.²² In the cytotoxic activity testing, juncenolide C (52) exhibited mild cytotoxicity against the growth of human hepa adenocarcinoma (HEPA 59T/VGH) and oral epidermoid carcinoma (KB-16) cells.¹⁹

Structure	No.	Name	Biological Activity	Ref.
(CH3) ₂ CHCH ₂ CO.	50	juncenolide B		17,18
AcO I^{1}	51	juncenolide B ($R_1 = OAc$, $R_2 = CH_2OH$,		18,19
AcO ₁₁	52	$R_3 = H$) juncenolide C ($R_1 = R_3 = OAc, R_2 =$	IC ₅₀ (HEPA 59T/VGH, KB-16)	19
R ¹ ₃ O ¹ , HO AcO	53	CH ₂ OH) juncenolide D ($R_1 = R_3 = OAc, R_2 = CH_2OCH_2$)	= 6.6, 7.8 μg/mL	19
	54	juncenolide E ($R_1 = OCOCH_2CH(CH_3)_2$, $R_2 = CH_2OH, R_3 = H$)		20
R ₃ OAc R _{2'/1} s CH ₂ OAc	55	juncin I ($\mathbf{R}_1 = \mathbf{R}_3 = \mathbf{OAc}, \mathbf{R}_2 = \mathbf{OCOCH}_{\mathbf{CH}}(\mathbf{CH}_{\mathbf{CH}})$		21
	56	juncin J ($R_1 = R_2 = OCOCH_2CH(CH_3)_2$, $R_3 = OAc$.)		21
AcO ₁ , where the second secon	57	juncin K ($R_1 = R_3 = OCOCH_2CH(CH_3)_2$, $R_2 = H$)		21
$\begin{array}{c} R_{2'',i} \\ R_{1} \\ O \\ AcO \\ V \\ O \end{array} $	58 59	juncin L ($R_1 = R_2 = OCOCH_2CH(CH_3)_2$, $R_3 = OAc$) juncin M ($R_1 = R_3 = OCOCH_2CH(CH_3)_2$, $R_2 = H$)		21 21
AcO OAc AcO HOOC H HOOC H ACO	60	juncin N		22

Table 8. The Briarane-Type Metabolites from J. juncea

3.1. Cavernularia (family Veretillidae)

A. Cavernularia sp.

Marine coelenterates of the order Pennatulacea have been proven to be rich sources of diterpenoids featuring the skeletal class of briaranes.¹ Two new briaranes, cavernulins A (**61**) and B (**62**), were isolated from an Indian Ocean sea pen coral, which is identified as *Cavernularia* sp., collected from the Eastern Coast of Bay of Bengal. The relative stereostructures of metabolites (**61** and **62**) were elucidated on the basis of spectral evidences (IR, MS, ¹H and ¹³C NMR spectrum).²³

Table 9. The Briarane-Type Metabolites from Cavernularia sp.

Structure	No.	Name	Ref.
R ¹¹¹ HO HO AcO ₁₁ ¹¹ O	61 62	cavernulin A (R = OCO(CH ₂) ₂ CH ₃) cavernulin B (R = OH)	23 23

3.2. Pteroeides (family Pteroeidae)

A. Pteroeides sp.

An Indonesian sea pen coral identified as *Pteroeides* sp., has afforded four new unnamed briarane-type diterpenoids (**63–66**). The relative stereostructures of briaranes (**63–66**) were determined on the basis of their spectral data (IR, MS, ¹H, and ¹³C NMR spectrum).¹² The metabolites (**63–65**) were inactive in the screening for multidrug resistance against oral epidermoid carcinoma KB-C2 (P-Gp type) and KB-CV60 (MRP-1 type) cells.^{12,24}

Ref. Structure No. Name AcO OAc 12 .OH 63 AcO `OAc 12 64 Ĥ AcO Cl 65 $R = OCOCH_2CH_3$ 12 HC НÒ

Table 10. The Briarane-Type Metabolites from *Pteroeides* sp.

Structure	No.	Name	Ref.
Aco OAc OAc HO HO HO OAc OAc	66		12

ACKNOWLEDGEMENTS

This work was supported by the grants from the National Museum of Marine Biology and Aquarium and the National Science Council (Contract No. NSC 93-2323-B-110-002 and NSC 93-2320-B-291-001) of the Republic of China awarded to P.-J. Sung.

REFERENCES AND NOTES

- The previous review article for briarane-related compounds, please see P.-J. Sung, J.-H. Sheu, and J.-P. Xu, *Heterocycles*, 2002, 57, 535, and references cited therein.
- 2. P.-J. Sung and M.-C. Chen, Heterocycles, 2002, 57, 1705.
- 3. N. González, J. Rodríguez, R. G. Kerr, and C. Jiménez, J. Org. Chem., 2002, 67, 5117.
- 4. S.-L. Wu, P.-J. Sung, J.-H. Su, and J.-H. Sheu, J. Nat. Prod., 2003, 66, 1252.
- 5. S.-L. Wu, P.-J. Sung, J.-H. Su, G.-H. Wang, and J.-H. Sheu, *Heterocycles*, 2004, 63, 895.
- P.-J. Sung, W.-P. Hu, S.-L. Wu, J.-H. Su, L.-S. Fang, J.-J. Wang, and J.-H. Sheu, *Tetrahedron*, 2004, 60, 8975.
- 7. J. H. Kwak, F. J. Schmitz, and G. C. Williams, J. Nat. Prod., 2002, 65, 704.
- T. Iwagawa, N. Nishitani, S. Kurosaki, H. Okamura, M. Nakatani, M. Doe, and K. Takemura, J. Nat. Prod., 2003, 66, 1412.
- 9. (1). The X-Ray data analysis of erythrolide K had been reported, please see D. Banjoo, A. R. Maxwell, B. S. Mootoo, A. J. Lough, S. McLean, and W. F. Reynolds, *Tetrahedron Lett.*, 1998, **39**. 1469. (2). The structures of erythrolides K–Q were first reported in the 10th International Symposium on Marine Natural Products (Okinawa, Japan, 2001) as a Symposium paper, and published in 2002, please see D. Banjoo, B. S. Mootoo, R. S. Ramsewak, R. Sharma, A. J. Lough, S. McLean, and W. F. Reynolds, *J. Nat. Prod.*, 2002, **65**, 314. Due to these metabolites had been reviewed in our previous article (ref. 1). Therefore, the structures of erythrolides K–Q are not shown in this review.
- O. Taglialatela-Scafati, K. S. Craig, D. Rebérioux, M. Roberge, and R. J. Andersen, *Eur. J. Org. Chem.*, 2003, 3515.
- O. Taglialatela-Scafati, U. Deo-Jangra, M. Campbell, M. Roberge, and R. J. Andersen, Org. Lett., 2002, 4, 4085.
- C. Tanaka, Y. Yamamoto, M. Otsuka, J. Tanaka, T. Ichiba, G. Marriott, R. Rachmat, and T. Higa, J. Nat. Prod., 2004, 67, 1368.

- 13. P.-J. Sung and T.-Y. Fang, Heterocycles, 2003, 60, 1199.
- 14. P.-J. Sung, T.-Y. Fan, L.-S. Fang, S.-L. Wu, J.-J. Li, M.-C. Chen, Y.-M. Cheng, and G.-H. Wang, *Chem. Pharm. Bull.*, 2003, **51**, 1429.
- P.-J. Sung, M.-R. Lin, W.-C. Chen, L.-S. Fang, C.-K. Lu, and J.-H. Sheu, *Bull. Chem. Soc. Jpn.*, 2004, 77, 1229.
- 16. P.-J. Sung, T.-Y. Fan, M.-C. Chen, L.-S. Fang, M.-R. Lin, and P.-C. Chang, *Biochem. Syst. Ecol.*, 2004, **32**, 111.
- N. Krishna, P. Muralidhar, M. M. K. Kumar, D. V. Rao, and CH. B. Rao, Asian J. Chem., 2003, 15, 344.
- Both briaranes (50) and (51) are designated as juncenolide Bby two research groups, respectively, please see ref. 17 and 19.
- 19. Y.-C. Shen, Y.-C. Lin, C.-L. Ko, and L.-T. Wang, J. Nat. Prod., 2003, 66, 302.
- 20. Y.-C. Shen, Y.-C. Lin, and Y.-L. Huang, J. Chin. Chem. Soc., 2003, 50, 1267.
- A. S. R. Anjaneyulu, V. L. Rao, V. G. Sastry, M. J. R. V. Venugopal, and F. J. Schmitz, *J. Nat. Prod.*, 2003, 66, 507.
- 22. P.-J. Sung, T.-Y. Fan, L.-S. Fang, J.-H. Sheu, S.-L. Wu, G.-H. Wang, and M.-R. Lin, *Heterocycles*, 2003, **61**, 587.
- A. Patra, A. Majumdar, K. K. Mandal, A. Ghosh, D. Banerjee, and B. P. Haldar, *J. Indian Chem. Soc.*, 2001, 78, 619.
- 24. In the ref. 12, the authors described the briaranes (63–66) were screened for their multidrug resistance. The briaranes (63–65) were inactive toward the oral epidermoid carcinoma KB-C2 and KB-CV60 cells. However, there is no description for the activity of briarane (66) reported in the above literature.