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INTRODUCTION 
 
Halogen-dance (HD) reactions, also referred to as halogen scrambling, halogen migration or 
based-catalyzed halogen dance (BCHD), 1 was first found by chance in 1953. 2 Since then researchers 
have been extensively studying this rearrangement. Their endeavors are reciprocated by following 
achievements: (1) significant extension of its scope; (2) illustration of its mechanism; (3) extensive 
applications in building novel or complicated compounds. These have been summarized in three 
reviews3-5

 among which the most recent review was published in 1996. This review gives a summury of 
halogen dance reactions after 1996. We focus on the migrations in heterocycles 6,7 including pyridines, 
quinolines, thiazoles and pyrazoles.  
 
Halogen Dance Reactions in Pyridines 
Halogen migrations in pyridines were first proposed by den Hertog during the amination of 
3-bromo-4-ethoxypyridine 8 in 1962 and investigated in detail later by Quéguiner. 9 The results listed in 
Table (Entries Py01~11) summarize the recent findings of the halogen dance reactions of pyridine 
halorides. 
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The typical pattern of the halogen dances of pyridine compounds can be demonstrated as in Scheme 1. 
The rearrangement usually takes place as 1,2-halogen shift. This furnishes us with a new and convenient 
synthetic approach to 1,3–disubstitued and 1,2,3-trisubstituted pyridines (Entries Py01~07). Saitton 
(Entry Py02) gave an excellent demonstration in exploiting the migrations (Scheme 2). 12, 13  
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The variety of DMG (as denoted in Scheme 1) remarkably widens the scope of this synthetic approch. 
Among halogens fluorine and chlorine atoms are familiar DMGs because they hardly migrate. 5 On the 
contrary bromine and iodine atoms seldom serve as DMGs for their lability of shift.5,10,11 In 2004, we 
provided an example in which bromine atom acted as DMG and 2-bromo-4-iodopyridine was efficiently 
synthesized via halogen dance (Entry Py06).16  
In addition to 1,2-halogen shifts, 1,3-halogen–shifts (Entries Py09~11) and 1,4-shifts (Entry Py09) can 
also be conducted. By means of 1,3-halogen-shifts, Schlosser and collaborators (Entry Py10 ) prepared a 
series of multi-substituted pyridine derivatives.15, 22 
In the total synthesis of caerulomycin C (also prepared by Quéguiner et al. via 1,2-halogen dance as in 
Entry Py08), Sammakia utilized 1,3, 1,4 – halogen dance reactions as key steps to incorporate two 
functional groups (Scheme 3).21 Obviously the diversity of halogen dance reactions allows the flexible 
functionalization of heterocycles in ways that would be difficult or impossible through classical means.  
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Halogen Dance Reactions in Quinolines, Thiazoles and Pyrazoles 
Halogen dance reactions of quinolines halides were first carried out by Quéguiner et al. in 1998. 
Treatment of 4-iodo-3-fluoroquinoline with LDA followed by electrophiles led to 1,3- iodine shifted 
products.24 Taking advantage of the rearrangement Quéguiner et al. performed syntheses of quindoline, 
cyptomisrine as well as benzo-δ-carbolines, cryptolepines and their salts (Entries Qu01~02).25, 26  
In contrast to the iodine’s migration in pyridine nucleus of quinolines, Blakemore practiced 1,3-iodine 
shifts in benzene ring during their synthesis of 6,6’-disubstituted 7,7’-dihydroxy-8,8’-biquinolyls (Entry 
Qu03).27  
It is interesting that a halogen dance across pyridine and benzene nucleus of quinoline (from C8 to C4) 
was also reported (Entry Qu04).28 Schlosser proposed this migration on the basis of alternate metalations 
of different substrates (Scheme 4).28 
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Scheme 4 
 

During the total synthesis of WS75624 B, Stangeland practiced various halogen dance of thiazoles (Entry 
Tz).29 The rearrangement enabled them to build 2,5-disubstituted thiazoles facilely which are rather 
difficult to obtain through classical means (Scheme 5).29   
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Halogen dance reactions of aromatic halorides have been induced mostly by LDA or n-BuLi through 
deprotonation or lithium-halogen exchange although they were promoted early by Na or K amides. 5 In 
2002, Eskildsen reported an unprecedented 1,3-halogen dance reaction of pyrazole 1-oxides in which the 
migration was initiated by bromine-magnesium exchange (Entry Pzo).30 The authors found that raising 
the reaction temperature from –78 oC to room temperature promoted the migration to completion. This 
rearrangement provided access to 3,4-disubstituted pyrazoles which were utilized to synthesize a series of 
pyrazolo[3,4-c]quinoline 1-oxides ( Scheme 6 ).30  
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CONCLUSION REMARKS  
 
Halogen dance reactions were first discovered by chance and, to some extent, regarded as side-reactions 
to prevent. Since the first example of controlled halogen dance at a thiophene derivative was reported by 
Kano, 31 this rearrangement has turned out to be a useful synthetic tool to many novel compounds. In the 
classical metalation of halorides, the functional groups are fixed to (via metal-halogen exchange ) or ortho 
to (via deprotonation ) the positions of halogen atoms. Halogen dance reactions enable us to introduce 
functional groups at other positions to halogens. This really makes halogens a great helper in organic 
synthesis. 
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Table  Halogen-Dance Reactions and Applications in Heterocycles 
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