HETEROCYCLES, Vol. 66, 2005, pp. 135 – 141. © The Japan Institute of Heterocyclic Chemistry Received, 5th September, 2005, Accepted, 25th October, 2005, Published online, 28th October, 2005. COM-05-S(K)50

STERICALLY CONGESTED "ROOFED" 2-IMINOTHIOETHERS AS NEW CHIRAL LIGANDS FOR PALLADIUM-CATALYZED ASYMMETRIC ALLYLIC ALKYLATION

 ${\mathbf R}$ yoh Tokuda,ª Hirofumi Matsunaga,ª* Tadao Ishizuka,ª Makoto Nakajima,ª **and Takehisa Kuniedab ***

a Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan b Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan

Abstract – The preparation of a new class of "roofed" aminothiol derivatives, from sterically congested, conformationally rigid chiral 2-thiazolidinones is described. The compounds function as efficient chiral ligands for the palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate in the presence of cesium carbonate as a base.

Development of methodologies for efficient asymmetric carbon-carbon bond formation is one of the most important areas in the field of organic synthesis.¹ Among such methods, chiral transition metal-catalyzed reactions have proven to be both useful and versatile. Generally, high enantioselectivities in such reactions depend on the use of well-designed chiral ligands. Various types of homo- and hetero-donor chiral ligands have been designed and prepared, including bisoxazoline $(N-N)$, bisphosphine $(P-P)$ ³ and oxazoline-phosphine $(N-P)^{2e,4}$ ligands.

Focusing on the N-S type ligands, several types of thioether-oxazolines⁵ and thioether-pyridines (quinoline)⁶ have been prepared and provide good to excellent enantioselectivities. To the contrary, only a few reports of the use of thioether-amine (imine) ligands, which are easily prepared from the corresponding 2-aminothiols derived from α -amino acids, have appeared.

We recently developed some chiral "roofed" 2-thiazolidinones, which are conformationally rigid and sterically bulky, by the thermal [4+2] cycloaddition of a simple 5-membered heterocycle, 2-thiazolone, to

This paper is dedicated to the memory of the Emeritus Professor Kenji Koga of Tokyo University.

cyclic dienes followed by optical resolution.⁸ These compounds have proven to be excellent chiral auxiliaries for use in asymmetric C-C bond formation reactions, including the α -alkylation of carbonyl compounds8 and β-conjugate addition reactions. The excellent stereoselectivities obtained in these reactions prompted us to apply this unique skeleton to new types of chiral "roofed" 2-aminothiol ligands and to test them as chiral ligands in catalytic asymmetric reactions.

In this paper, we report on some sterically congested "roofed" 2-iminothioethers as new chiral ligands for palladium-catalyzed asymmetric allylic alkylation, leading to excellent enantioselectivity.

Starting from the "roofed" *cis*-2-aminothiol (**2**), which is readily obtained from the chiral 2-thiazolidinone $(1)^8$ by hydrolytic ring cleavage with $Ba(OH)_2$ in ethanol under reflux, nine types of new "roofed" 2-iminothioether ligands (**4**) ⁹ were prepared by the *S*-alkylation of **2** followed by the formation of the imines (Scheme 1).

Enantioselective palladium-catalyzed allylic alkylation has been extensively studied because it is a powerful tool for the enantioselective formation of carbon-carbon and carbon-heteroatom bonds.^{3e,10} Although various types of chiral ligands have been used in this reaction, 2-iminothioethers, established by Anderson *et al.*, represent the only case of a 2-iminothioether-Pd catalyzed allylic alkylation.^{7a} Therefore, we chose enantioselective palladium-catalyzed allylic alkylation as a model reaction for the evaluation of the chiral 2-iminothioether ligands.

We initially tested the activity of the "roofed" 2-iminothioether (**4a)**-Pd(II) complex, prepared *in situ*, as a catalyst. Thus, the asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate (**5**) with dimethyl malonate in the presence of *N*,*O*-bis(trimethylsilyl)acetamide (BSA) as a base in CH₂Cl₂ proceeded to give the corresponding product (**6**) in 80% ee, but only in 31% yield (Table 1, Entry 1).

However, the yields were greatly dependent on the nature of the solvent: good results (85% yield, 84% ee and 72% yield, 84% ee) were obtained in toluene and acetonitrile, respectively (Entries 2, 4).

We also investigated the effects of the base in this reaction. Using NaH as a base, the reactions proceeded well in toluene and acetonitrile to give yields of 96% and 89%, respectively, but a slight decline of enatioselectivity was observed (Entries 6, 8). It is interesting to note that Cs_2CO_3 dramatically accelerated the reactions in various solvents to give good to excellent yields and also 80-83% ee (Entries 9-12).¹¹ The

combination of Cs_2CO_3 and acetonitrile showed the best performance giving a 93% yield in only 15 minutes (Entry 12).

			OAc		4a $(5 \text{ mol } \%)$ $[Pd(C_3H_5)Cl]_2$ (2.5 mol %)			N e U_2 U_3 U_2 N			
	(B) $CH_2(CO_2Me)_2$ (3 eq.) Base (3 eq.) 5 6 Solvent, rt, Time										
Entry	Base	Solvent	Time (h)	Yield ^a (%)	eeb (%)	Entry	Base	Solvent	Time (h)	Yield ^a (%)	ee^b (%)
1	BSA / KOAc ^c CH ₂ Cl ₂		24	31	80	7	NaH	THF	24	73	63
\mathcal{P}	BSA / KOAc ^c Toluene		24	85	84	8	NaH	MeCN	2	89	79
3	BSA / KOAcc	THF	24	13	83	9	Cs ₂ CO ₃	CH ₂ Cl ₂	3	93	81
4	BSA / KOAc ^c	MeCN	3	72	84	10	Cs ₂ CO ₃	Toluene	3	90	81
5	NaH	CH ₂ Cl ₂	24	49	71	11	Cs ₂ CO ₃	THF	3	78	80
6	NaH	Toluene	3	96	61	12	Cs ₂ CO ₃	MeCN	0.25	93	83

Table 1. Palladium-catalyzed asymmetric allylic alkylation with an iminothioether type ligand

 M_2 C CO₂Me

alsolated vields.

^bDetermined by HPLC (Daicel CHIRALPAK AD-H, Hexane:i-PrOH = 19:1, flow 1.0 mL/min).

^cKOAc 5 mol %.

Table 2 summarizes the optimization of the 2-iminothioether ligand (**4**) for the Pd(II)-catalyzed asymmetric allylic alkylation of 5 with dimethyl malonate in the presence of Cs_2CO_3 in acetonitrile. Almost all the reactions proceeded very rapidly, being complete in one hour. We initially investigated the substituent effect of the *N*-benzylidene moiety (Entries 2-5). Regardless of whether electron-withdrawing or electron-donating substituents were present at the *para*-position, no significant improvement in the enantioselectivities was observed. The 1-naphthylmethylidene ligand gave a slightly higher enantioselectivity (86% ee, Entry 6) and the sterically bulky 9-anthranylmethylidene moiety showed a 90% enantioselectivity (Entry 7). These results suggest that steric factors are more important than the electronic features for the *N*-benzylidene moiety. Enantioselectivities were also improved by replacing the *S*-benzyl with an *S*-methyl group (Entries 1 vs. 8, and 7 vs. 9) and 95% ee was observed at 0 °C (Entry 10).

Generally, in the case of nitrogen-sulfur chiral chelate ligands used in Pd(II)-catalyzed asymmetric allylic alkylation reactions, it is assumed that the sulfur atom is a better electron acceptor¹² and nucleophilic attack at the π-allyl complex occurs at a *trans*-position to the sulfur atom because of the longer palladium-allyl terminus bond length than other ligands. To the contrary, Anderson *et al*. 7a reported that 2-iminothioether-Pd catalyzed allylic alkylation occurs at a *trans*-position to the imine and the enantioselectivity is controlled by the steric environment of the chiral 2-iminothioether chelate ligand. While the precise mechanism for "roofed" 2-iminothioether (**4a)**-Pd(II)-catalyzed asymmetric allylic

alkylation reaction is not clear, the most plausible hypothesis for this reaction is depicted in Figure 1.

Table 2. Palladium-catalyzed asymmetric allylic alkylation with an iminothioether type ligand using Cs_2CO_3 as base in MeCN

 $[Pd(C_3H_5)Cl]_2$ (2.5 mol %)

CH₂(CO₂Me)₂ (3 eq.)

MeO₂C_c CO₂Me

 (R)

Ligand (5 mol %)

OAc

alsolated vields.

bDetermined by HPLC (Daicel CHIRALPAK AD-H, Hexane:i-PrOH = 19:1, flow 1.0 mL/min).

^cThe reaction was carried out at 0 °C.

Thus, there are two possible diastereomeric π-allylic palladium complexes, **II** (M-type) and **I** (W-type). A steric interaction between the "roof" moiety of the 2-iminothioether ligand and the phenyl ring of the π-allyl substrate would render intermediate (**II**) more feasible than **I**, and a nucleophilic attack at the π-allyl complex would occur at a *trans*-position to the sulfur atom, a better electron acceptor, ¹² to preferentially give the (*R*)-alkylated product (**6**).

Focusing on intermediate (II) , the phenyl ring of the π -allyl substrate and the *N*-benzylidene moiety would be in close proximity and we therefore speculate that the sterical bulkiness of the *N*-benzylidene moiety would activate the reactivity of the π-allyl terminus *trans* to the sulfur atom, thus giving the higher enantioselectivities. To the contrary, diminishing the sterical interaction between the phenyl ring of the π-allyl substrate and the thioether moiety would lead to an increased enantioselectivity. Therefore, the "roofed" 2-iminothioether ligand (**4**) has two characteristics for providing good to excellent enantioselectivity; a sulfur atom as a better electron acceptor (electronic factor) and an *N*-benzylidene moiety and a thioether moiety (steric factor).

Figure 1. Plausible asymmetric induction process of palladium-catalyzed asymmetric allylic alkylation via π -allylpalladium complex intermediate.

In summary, a new "roofed" iminothioether type ligand showed exellent enantioselectivity for the palladium-catalyzed allylic alkylation of 1,3-diphenyl-2-propenyl acetate (**5**) with dimethy malonate. These results indicate that ligands are promising in asymmetric catalysis in which transition metals are used. Further studies are currently in progress.

ACKNOWLEDGEMENTS

This work was supported, in part, by a grant from the TAKEDA SCIENCE FOUNDATION and a Grant-in-Aid for Scientific Research (No. 15790013 and 17590010) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES AND NOTES

- 1. For reviews, see: (a) I. Ojima, Ed. 'Catalytic Asymmetric Synthesis', VCH, New York, 1993. (b) E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, Eds. 'Comprehensive Asymmetric Catalysis', Springer, New York, 1999.
- 2. Selected papers: (a) D. Müller, G. Umbricht, B. Weber, and A. Pfaltz, *Helv. Chim. Acta*, 1991, **74**, 232. (b) D. A. Evans, K. A. Woerpel, M. M. Hinman, and M. M. Faul, *J. Am. Chem. Soc.*, 1991, **113**, 726. (c) E. J. Corey, N. Imai, and H.-Y. Zhang, *J. Am. Chem. Soc.*, 1991, **113**, 728. (d) A. K. Ghosh, P. Mathivanan, and J. Cappiello, *Tetrahedron: Asymmetry*, 1998, **9**, 1. (e) H. A. McManus and P. J. Guiry, *Chem. Rev.*, 2004, **104**, 4151.
- 3. Selected papers: (a) H. B. Kagan and T.-P. Dang, *J. Am. Chem. Soc.*, 1972, **94**, 6429. (b) T. Hayashi, A. Yamamoto, Y. Ito, E. Nishioka, H. Miura, and K. Yanagi, *J. Am. Chem. Soc.*, 1989, **111**, 6301. (c) R. Noyori and H. Takaya, *Acc. Chem. Res.*, 1990, **23**, 345. (d) M. Sawamura and Y. Ito, *Chem. Rev.*, 1992, **92**, 857. (e) B. M. Trost and D. L. Van Vranken, *Chem. Rev.*, 1996, **96**, 395.
- 4. (a) P. von Matt and A. Pfaltz, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 566. (b) J. Sprinz and G. Helmchen, *Tetrahedron Lett.*, 1993, **34**, 1769. (c) G. J. Dawson, C. G. Frost, J. M. J. Williams, and S. J. Coote, *Tetrahedron Lett.*, 1993, **34**, 3149. (d) G. Helmchen and A. Pfaltz, *Acc. Chem. Res.*, 2000, **33**, 336. (e) P. J. Guiry and C. P. Saunders, *Adv. Synth. Catal.*, 2004, **346**, 497.
- 5. (a) A. Chesney, M. R. Bryce, R. W. J. Chubb, A. S. Batsanov, and J. A. K. Howard, *Tetrahedron: Asymmetry*, 1997, **8**, 2337. (b) K. Boog-Wick, P. S. Pregosin, and G. Trabesinger, *Organometallics*, 1998, **17**, 3254. (c) Y. Imai, W. Zhang, T. Kida, Y. Nakatsuji, and I. Ikeda, *Synlett*, 1999, 1319. (d) J. Park, Z. Quan, S. Lee, K. H. Ahn, and C.-W. Cho, *J. Organomet. Chem.*, 1999, **584**, 140. (e) J. Christoffers, A. Mann, and J. Pickardt, *Tetrahedron*, 1999, **55**, 5377. (f) X.-L. Hou, X.-W. Wu, L.-X. Dai, B.-X. Cao, and J. Sun, *Chem. Commun.*, 2000, 1195. (g) S.-L. You, X.-L. Hou, L.-X. Dai, Y.-H. Yu, and W. Xia, *J. Org. Chem.*, 2002, **67**, 4684. (h) M. Gómez, S. Jansat, G. Muller, M. A. Maestro,

and J. Mahía, *Organometallics*, 2002, **21**, 1077.

- 6. (a) G. Chelucci and M. A. Cabras, *Tetrahedron: Asymmetry*, 1996, **7**, 965. (b) A. H. M. de Vries, R. P. Hof, D. Staal, R. M. Kellogg, and B. L. Feringa, *Tetrahedron: Asymmetry*, 1997, **8**, 1539. (c) B. Koning, A. Meetsma, and R. M. Kellogg, *J. Org. Chem.*, 1998, **63**, 5533. (d) G. Chelucci, N. Culeddu, A. Saba, and R. Valenti *Tetrahedron: Asymmetry*, 1999, **10**, 3537. (e) G. Chelucci, A. Bacchi, D. Fabbri, A. Saba, and F. Ulgheri, *Tetrahedron Lett.*, 1999, **40**, 553.
- 7. (a) H. Adams, J. C. Anderson, R. Cubbon, D. S. James, and J. P. Mathias, *J. Org. Chem.*, 1999, **64**, 8256. (b) G. A. Rassias, P. C. B. Page, S. Reignier, and S. D. R. Christie, *Synlett*, 2000, 379. (c) D. G. I. Petra, P. C. J. Kamer, A. L. Spek, H. E. Schoemaker, and P. W. N. M. van Leeuwen, *J. Org. Chem.*, 2000, **65**, 3010. (d) A. L. Braga, M. W. Paixão, P. Milani, C. C. Silveira, O. E. D. Rodrigues, and E. F. Alves, *Synlett*, 2004, 1297. (e) P. H. Schneider, H. S. Schrekker, C. C. Silveira, L. A. Wessjohann, and A. L. Braga, *Eur. J. Org. Chem.*, 2004, 2715.
- 8. S. Hoshimoto, H. Matsunaga, and T. Kunieda, *Chem. Pharm. Bull.*, 2000, **48**, 1541.
- 9. Spectroscopic data of the typical 2-iminothioether ligands (**4a**, **4g** and **4i**) are as follows. Compound (4a): colorless amorphous; $[\alpha]_D$ +394.5 ° (*c* 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 2.00 (3H, s), 2.11 (3H, s), 3.03 (1H, d, *J* = 8.6 Hz), 3.19 (1H, d, *J* = 8.6 Hz), 3.70 (1H, d, *J* = 13.4 Hz), 3.74 (1H, d, $J = 13.4$ Hz), 7.13-7.53 (18H, m), 8.06 (1H, s); ¹³C NMR (125 MHz, CDCl₃) δ 15.9, 17.2, 38.2, 46.6, 46.9, 57.7, 78.1, 121.0, 121.45, 121.46, 122.8, 125.4, 125.8, 125.9, 126.6, 128.2, 128.4, 128.5, 128.9, 129.0, 130.5, 136.2, 138.6, 142.5, 143.8, 144.8, 146.6, 160.4. MS (FAB): *m*/*z* 460 $(MH)^+$; HRMS calcd for $C_{32}H_{30}$ NS 460.2099, found 460.2166. Compound (4g): yellow amorphous; $[\alpha]_D$ +166.0 ° (*c* 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.89 (3H, s), 2.26 (3H, s), 3.18 (1H, d, *J* = 8.4 Hz), 3.55 (2H, s), 3.72 (1H, d, *J* = 8.4 Hz), 7.00-7.50 (17H, m), 7.97-8.00 (2H, m), 8.48 (1H, s), 8.79-8.82 (2H, m), 9.29 (1H, s); ¹³C NMR (125 MHz, CDCl₃) δ 16.4, 17.2, 38.7, 46.9, 47.2, 57.6, 81.3, 120.9, 121.8, 122.75, 122.83, 125.2, 125.58, 125.64, 125.7, 126.0, 126.1, 126.6, 126.8, 128.2, 128.9, 129.0, 130.4, 130.9, 131.2, 131.4, 138.7, 142.4, 144.0, 144.3, 147.0, 159.6. MS (FAB): *m*/*z* 560 (MH)⁺; HRMS calcd for C₄₀H₃₄NS 560.2412, found 560.2490. Compound (4i): yellow amorphous; $[\alpha]_{D}$ +121.2 ° (*c* 1.02, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.90 (3H, s), 1.92 (3H, s), 2.24 (3H, s), 3.19 (1H, d, *J* = 8.4 Hz), 3.89 (1H, d, *J* = 8.4 Hz), 7.22-7.50 (12H, m), 7.95-7.99 (2H, m), 8.47 (1H, s), 8.77-8.81 (2H, m), 9.43 (1H, s); ¹³C NMR (125 MHz, CDCl₃) δ 16.4, 17.4, 18.3, 46.9, 60.1, 81.3, 120.7, 121.9, 122.7, 123.0, 125.1, 125.59, 125.64, 125.7, 126.0, 126.1, 126.8, 128.9, 130.5, 131.2, 131.4, 132.2, 142.3, 144.0, 144.2, 147.4, 159.8. MS (FAB): m/z 484 (MH⁺); HRMS calcd for $C_{34}H_{30}NS$ 484.2099, found 484.2188.
- 10. For reviews, see: (a) C. G. Frost, J. Howarth, and J. M. J. Williams, *Tetrahedron: Asymmetry*, 1992, **3**, 1089. (b) L. F. Tietze, H. Ila, and H. P. Bell, *Chem. Rev.*, 2004, **104**, 3453. For recent reports, see: (c) O. Pàmies, M. Diéguez, and C. Claver, *J. Am. Chem. Soc.*, 2005, **127**, 3646. (d) J. W. Faller and J.

C. Wilt, *Org. Lett.*, 2005, **7**, 633. (e) G. Chelucci and G. Orrù, *Tetrahedron Lett.*, 2005, **46**, 3493. (f) J. C. Anderson and J. Osborne, *Tetrahedron: Asymmetry,* 2005, **16**, 931. (g) A. L. Braga, J. A. Sehnem, D. S. Lüdtke, G. Zeni, C. C. Silveira, and M. I. Marchi, *Synlett*, 2005, 1331. (h) M. Diéguez, O. Pàmies, and C. Claver, *J. Org. Chem.*, 2005, **70**, 3363. (i) F. Ferioli, C. Fiorelli, G. Martelli, M. Monari, D. Savoia, and P. Tobaldin, *Eur. J. Org. Chem.*, 2005, 1416. (j) E. Guimet, M. Diéguez, A. Ruiz, and C. Claver, *Tetrahedron: Asymmetry*, 2005, **16**, 959. (k) A. Bueno, R. M. Moreno, and A. Moyano, *Tetrahedron: Asymmetry*, 2005, **16**, 1763.

- 11. Trost *et al.* have reported that the choice of larger alkali metal base such as $Cs₂CO₃$ effected asymmetric induction to give higher ee than NaH; (a) B. M. Trost, A. C. Krueger, R. C. Bunt, and J. Zambrano, *J. Am. Chem. Soc.*, 1996, **118**, 6520. (b) B. M. Trost and D. L. Van Vranken, *Chem. Rev.*, 1996, **96**, 395. Further study for such a dramatic effect of $Cs₂CO₃$ as rate-acceleration is ongoing.
- 12. The sulfur atom can withdraw electrons from the *trans*-potision, namely a π-acceptor, see: (a) In 'Survey of Transition Metal Chemistry', F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, 'Advanced Inorganic Chemistry' (sixth edition), Wiley-Interscience Publication, New York, 1999; Chapter 16, pp. 633-691. (b) J. HuHeey, 'Inorganic Chemistry', Harper and Row, New York, 1983. Other reports indicating that the sulfur atom is a better π-acceptor than a nitrogen atom: (c) J. Sprinz, M. Kiefer, G. Helmchen, M. Reggelin, G. Huttner, O. Walter, and L. Zsolnai, *Tetrahedron Lett.*, 1994, **35**, 1523. (d) J. V. Allen, S. J. Coote, G. J. Dawson, C. G. Frost, C. J. Martin, and J. M. J. Williams, *J. Chem. Soc., Perkin Trans. 1*, 1994, 2065. (e) A. Chesney and M. R. Bryce, *Tetrahedron: Asymmetry*, 1996, **7**, 3247. (f) T. Morimoto, K. Tachibana, and K. Achiwa, *Synlett*, 1997, 783.