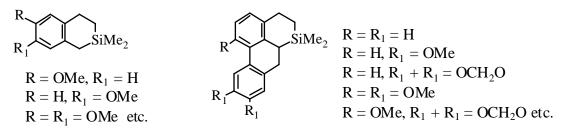
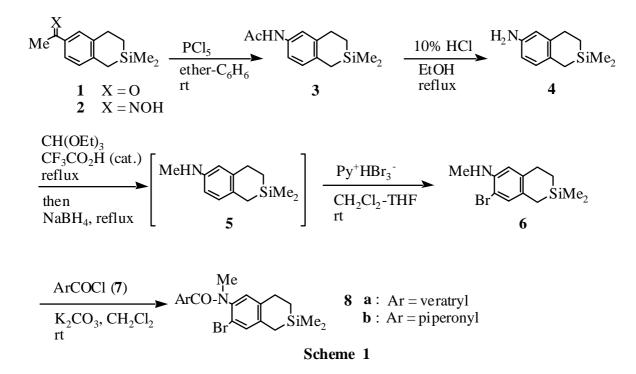
HETEROCYCLES, Vol. 66, 2005, pp. 659 – 666. © The Japan Institute of Heterocyclic Chemistry Received, 27th September, 2005, Accepted, 25th October, 2005, Published online, 28th October, 2005. COM-05-S(K)64


## SYNTHESIS OF *N*-METHYLPHENANTHRIDINONE DERIVATIVES FUSED WITH A SILACYCLOHEXANE RING BY RADICAL REACTION USING TRIBUTYLTIN HYDRIDE<sup>‡</sup>

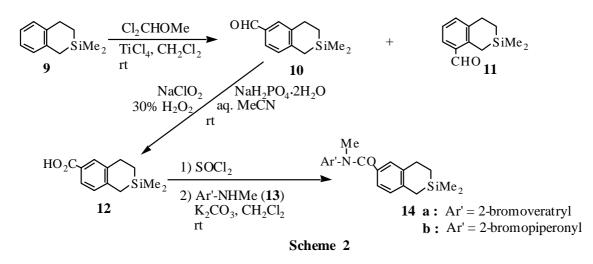
Yuya Hoshino and Osamu Hoshino\*,1

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda-shi, Chiba 278-8510, Japan

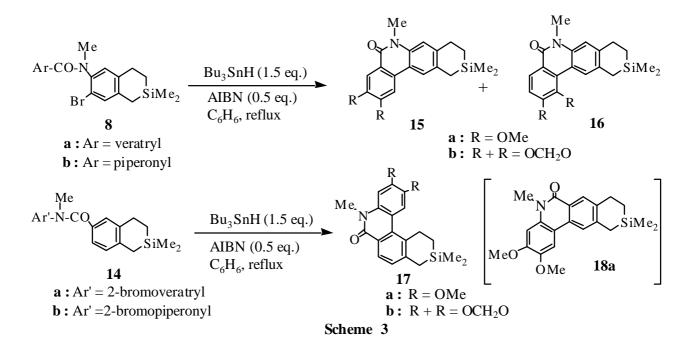

**Abstract** - Radical reaction of (*N*-methyl-7-bromo-2,2-dimethyl-2-silatetralin-6-ylamino)veratramide (**8a**) and -piperonamides (**8b**) in boiling benzene using tributyltin hydride and AIBN gave two kinds of *N*-methylphenanthridinone derivatives (**15** and **16**), which were cyclized at 6-and 2-positions of aroylic acid moiety. On the other hand, similar reaction of *N*-methyl-*N*-(2-bromoveratryl and 2-bromopiperonyl)-2,2-dimethyl-2-silatetralin-6-carboxamides (**14**) produced *N*-methylphenanthridinone deivatives (**17**) as each sole product, in which cyclization occurred at 5-position of 2-silatetralin moiety.

For the purpose of exploring biologically active organosilicon compounds,<sup>2</sup> we have reported synthesis of 2-silatetralin derivatives<sup>3,4</sup> (**Figure**). As a part of the aim, synthesis of *N*-methylphenanthridinone derivatives containing a silicon atom was examined. The present paper is concerned with synthesis of *N*-methylphenanthridinone derivatives (**15-17**) fused with a silacyclohexane ring starting from 2-silatetralin (9).




Figure

Starting materials for radical reaction were obtained as follows. Namely, *N*-(7-bromo-2-silatetralin-6-yl)aroylamides (8) were prepared from 6-acetyl-2-silatetralin ( $\mathbf{1}$ )<sup>5</sup> in 7 steps (**Scheme 1**). Beckmann




rearrangement of oxime (2) of 1 with PCl<sub>5</sub> in ether and benzene at room temperature gave 6-acetylamino-2-silatetralin (3), acidic hydrolysis of which afforded 6-amino-2-silatetralin (4) in 75 % yield. *N*-Methylation<sup>6</sup> of 4 followed by bromination with pyridinium tribromide in CH<sub>2</sub>Cl<sub>2</sub> at room temperature produced 7-bromo-6-methylamino-2-silatetralin (6) in 50 % yield (3 steps). The structure was determined by its <sup>1</sup>H NMR spectrum, showing two singlets (each 1H) at  $\delta$  7.14 and 6.44. Amidation of **6** with veratric and piperonic acid chlorides (**7**) in CH<sub>2</sub>Cl<sub>2</sub> containing K<sub>2</sub>CO<sub>3</sub> at room temperature afforded *N*-methyl-(7-bromo-2-silatetralin-6-yl)aroylamides (**8**) in good yields.

On the other hand, *N*-bromoaryl-2-silatetralin-6-carboxamides (14) were prepared from 2-silatetralin (9) Friedel-Crafts type reaction of 9 using dichloromethoxymethane<sup>7</sup> in the in 3 steps (Scheme 2). presence of titanium chloride in  $CH_2Cl_2$  at room temperature gave 6- (10) and 8-formyl- (11) 2-silatetralins in 39 and 20 % yields, respectively. The structures were confirmed by their <sup>1</sup>H NMR spectra [ $\delta$  7.62, 7.22 (each 1H, d, J = 7.6 Hz) for **10** and  $\delta$  7.64 (1H, d, J = 7.6 Hz), 7.31 (1H, d J = 7.3 Hz), 7.18 (1H, dd, J = 7.6, 7.3 Hz) for 11]. Oxidation of 10 in a usual way was unfruitful. However, **10** was oxidized smoothly with sodium chlorite<sup>8</sup> and 35 % hydrogen peroxide in aqueous temperature acetonitrile containing sodium dihydrogenphosphate room at to produce 2-silatetralin-6-carboxylic acid (12) in 93 % yield. Amidation of 12 through the acid chloride with 2-bromo-N-methylveratrylamine  $(13a)^9$ and 2-bromo-N-methylpiperonylamine  $(13b)^9$ gave *N*-methyl-*N*-bromoaryl-2-silatetralin-6-carboxamides (14) in good yields.



With starting materials (8, 14) in hand, radical reaction was run (Scheme 3). A mixture of 8a, Bu<sub>3</sub>SnH and AIBN in benzene was refluxed for 5 h. After usual work-up, separation of the products by preparative thin-layer chromatography (TLC) on silica gel gave two kinds of cyclized products (15a and 16a) in 39 and 10 % yields, respectively. The structure of 15a was determined by the presence of four singlets (each 1H) at  $\delta$  7.93, 7.80, 7.58, and 7.16, while that of 16b was proved by the presence of two pairs of doublet (each 1H, J = 8.9 Hz) at  $\delta$  8.01 and 7.35 and two singlets (each 1H) at  $\delta$  7.83 and 7.09



in the respective <sup>1</sup>H NMR spectrum. Similarly, reaction of **8b** afforded **15b** and **16b** in 36 and 10 % yields. On the other hand, analogous reaction of **14a** gave a cyclized product (**17a**) in 25 % yield, the structure of which was confirmed on thebasis of the <sup>1</sup>H NMR spectrum, showing two pairs of doublet (each 1H, J = 8.3 Hz) at  $\delta$  7.89 and 7.41 and two singlets (each 1H) at  $\delta$  7.62 and 6.80. Thus, this evidence supported the cyclization to take place at 5-positon of 2-silatetralin moiety. *N*-Methylphenanthridinone isomer (18a), which was cyclized at 7-position of 2-silatetralin moiety, was not detected. With 14b, cyclized product (17b) was also obtained in 22 % yield.

In conclusion, synthesis of *N*-methylphenanthridinone derivatives (**15-17**) fused with a silacyclohexane ring by radical reaction was accomplished, though improvement of yield remained.

## ACKNOWLEGEMENTS

The authors are grateful to Mrs. F. Hasegawa of this faculty for MS spectral measurements.

## **EXPERIMENTAL**

**General.** All melting points were measured on a Yanagimoto melting point apparatus and are uncorrected. IR spectra were obtained with a JASCO FT/IR-400 on KBr disk, unless otherwise noted. <sup>1</sup>H and <sup>13</sup>C NMR spectra were taken with a JEOL JNM AL-300 (300 MHz for <sup>1</sup>H NMR and 75 MHz for <sup>13</sup>C NMR) spectrometer in CDCl<sub>3</sub> solution with  $CH_2Cl_2$  as the internal standard. MS spectra were measured on a Hitachi M-80 or a JOEL JMS D-300 spectrometer. Column chromatography was run over silica gel (Merck Kieselgel 60). Preparative TLCs were performed on a Merck 5744 plate. Organic extracts were dried over MgSO<sub>4</sub> and the solvent was removed under reduced pressure.

**6-Amino-2,2-dimethyl-2-silatetralin** (**4**)— A solution of oxime (**2**) (7.20 g, 0.031 mol) [prepared by oximylation of 6-acetyl-2-silatetralin (**1**) in a usual way] in benzene (120 mL)-ether (40 mL) was stirred with PCl<sub>5</sub> (10.3 g, 0.050 mol) at rt for 1 h. After the reaction was quenched with water, the product was taken up in ether. Usual work-up of the ether extract followed by purification on column chromatography (hexane : EtOAc = 5 : 1 ~ 1 : 2) gave 6-acetylamino-2-silatetralin (**3**) (6.37 g, 88 %, mp 88-89°C) [<sup>1</sup>H NMR  $\delta$  2.13 (3H, s), 0.02 (6H, s); <sup>13</sup>C NMR  $\delta$  168.3, 142.2, 134.8, 134.4, 129, 119.7, 118.0, 29.6, 24.3, 20.1, 11.4, -2.0, -2.1 ; IR 3214, 1647 cm<sup>-1</sup>; MS *m/z* 233 (M<sup>+</sup>)].

A solution of 6-acetylamino-2-silatetralin (**3**) (1.50 g, 6.43 mmol) in EtOH (20 mL) was refluxed with 10 % HCl (20 mL) for 5 h. Work-up as usual gave an oily product, which was chromatographed (hexane : EtOAc = 20 : 1) to leave 6-amino-2-silatetralin (**4**) (0.93 g, 75 %) as a pale yellow oil. <sup>1</sup>H NMR  $\delta$  6.87, 6.48 (each 1H, d, *J* = 7.3 Hz), 6.50, 6.48 (each 1H, s), 3.41 (2H, br), 0.03 (6H, s): <sup>13</sup>C NMR  $\delta$  143.4, 142.6, 130.2, 127.9, 115.5, 113.1, 29.7, 19.3, 11.7, -2.1; IR (film) 3431 cm<sup>-1</sup>; MS *m*/*z* 191 (M<sup>+</sup>); HRMS *m*/*z* calcld for C<sub>11</sub>H<sub>17</sub>NSi (M<sup>+</sup>) 191.1129, found 191.1127.

**7-Bromo-6-methylamino-2,2-dimethyl-2-silatetralin** (6) – A solution of 6-amino compound (4) (1.13 g, 5.93 mmol) in CH(OEt)<sub>3</sub> (20 mL) containing CF<sub>3</sub>CO<sub>2</sub>H (few drops) was refluxed for 7 h. Removal of the solvent produced an oily product, which was refluxed with NaBH<sub>4</sub> (0.45 g, 11.9 mmol) in EtOH (30 mL) for 3 h. Usual work-up followed by extraction with CHCl<sub>3</sub> and removal of the solvent gave an oily

product, which was chromatographed (hexane : EtOAc = 20 : 1) to leave 6-methylamino-2,2dimethyl-2-silatetralin (**5**) (0.88 g, 72 %) as a pale yellow oil [<sup>1</sup>H NMR  $\delta$  6.91, 6.43 (each 1H, d, *J* = 7.3 Hz), 6.45 (1H, s), 2.81 (3H, s), 3.38 (1H, br), 0.03 (6H, s): <sup>13</sup>C NMR  $\delta$  143.3, 138.9, 126.7, 123.1, 109.3, 106.7, 27.5, 26.4, 15.6, 8.3, -0.20; IR (film) 3407 cm<sup>-1</sup>].

A solution of the 6-methylamino compound (**5**) (0.89 g, 4.32 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (43 mL)-THF (20 mL) was stirred with pyridinium tribromide (2.76 g, 8.64 mmol) at rt for 2 h. Usual work-up gave an oily product, which was chromatographed (hexane : EtOAc = 20 : 1) to produce the title compound (**6**) (0.86 g, 70 %) as an oil. <sup>1</sup>H NMR  $\delta$  7.14, 6.44 (each 1H, s), 2.87 (3H, s), 0.03 (6H, s); <sup>13</sup>C NMR  $\delta$  142.8, 141.8, 132.4, 127.1, 110.9, 106.5, 30.6, 29.4, 18.7, 11.3, -2.4; IR (film) 3421 cm<sup>-1</sup>; MS *m*/*z* 283 (M<sup>+</sup>), 285 (M<sup>+</sup>+ 2); HRMS *m*/*z* calcld for C<sub>12</sub>H<sub>18</sub>NBrSi (M<sup>+</sup>) 283.0392, found 283.0396.

*N*-(7-Bromo-2,2-dimethyl-2-silatetralin-6-yl)-*N*-methylveratramide and -piperonamide (8): a) A mixture of **6** (341 mg, 1.20 mmol), acid chloride (7a) [prepared from veratric acid (182 mg, 1.00 mmol) and SOCl<sub>2</sub> (0.29 mL, 4.0 mmol) in a usual manner], and K<sub>2</sub>CO<sub>3</sub> (209 mg, 1.50 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was stirred at rt for 24 h. Work-up as usual followed by chromatography (hexane : EtOAc = 20 : 1 ~ 3 : 1) produced bromo-amide (8a) (429 mg, 96 %, mp 51-52°C). <sup>1</sup>H NMR δ 7.23, 6.92, 6.78 (each 1H, s), 6.96, 6.61 (each 1H, *J* = 8.3 Hz), 3.79, 3.69, 3.44 (each 3H, s), 0.03, -0.04 (each 3H, s); <sup>13</sup>C NMR δ 170.5, 150.1, 147.6, 142.3, 140.8, 140.1, 133.5, 129.4, 128.2, 121.9, 119.5, 111.7, 109.8, 55.7, 55.6, 37.4, 28.9, 20.5, 11.1, -2.2, -2.3; IR 1635 cm<sup>-1</sup>; MS m/z 447 (M<sup>+</sup>), 449 (M<sup>+</sup>+ 2).

b) 6-Methylamino-2-silatetralin (6) (375 mg, 1.32 mmol), acid chloride (7b) [prepared from piperonic acid (183 mg, 1.10 mmol) and SOCl<sub>2</sub> (0.32 mL, 4.40 mmol) in a usual manner], K<sub>2</sub>CO<sub>3</sub> (228 mg, 1.65 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (7.5 mL) were used. After reaction similar to that noted for **8a**, chromatography (hexane : EtOAc = 20 : 1 ~ 5 : 1) produced bromo-amide (**8b**) (453 mg, 95 %, mp 124-125°C). <sup>1</sup>H NMR  $\delta$  7.22 (1H, s), 5.86 (2H, s), 3.33 (3H, s), 0.05, -0.06 (each 3H, s); <sup>13</sup>C NMR  $\delta$  170.2, 148.9, 146.9, 142.2, 140.2, 133.5, 129.8, 129.3, 123.2, 119.5, 109.0, 107.2, 101.1, 37.4, 28.9, 20.6, 11.1, -2.2, -2.4; IR 1638 cm<sup>-1</sup>; MS *m*/*z* 431 (M<sup>+</sup>), 433 (M<sup>+</sup>+2).

Formylation of 2,2-dimethyl-2-silatetralin (9) – To an ice-cooled, stirred solution of 9 (4.00 g, 22.7 mmol) and TiCl<sub>4</sub> (8.69 g, 45.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was rapidly added Cl<sub>2</sub>CHOMe (5.22 g, 45.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) and stirring was continued at rt for 15 min. The mixture was carefully quenched with water under ice-cooling and the product was taken up in CH<sub>2</sub>Cl<sub>2</sub>. Work-up as usual followed by chromatography (hexane : EtOAc = 20 : 1) gave 6- (10) (1.81 g, 39 %) and 8-formyl-2-silatetalins (11) (0.94 g, 20 %) as each oil, respectively.

6-*Formyl*-2,2-*dimethyl*-2-*silatetralin* (**10**): <sup>1</sup>H NMR δ 9.82, 7.60 (each 1H, s), 7.62, 7.22 (each 1H, d, *J* = 7.6 Hz), 0.05 (6H, s); <sup>13</sup>C NMR δ 192.2, 147.0, 142.3, 133.8, 129.8, 128.7, 128.5, 29.4, 22.3, 11.1, -2.1:

IR (film) 1694 cm<sup>-1</sup>; MS m/z 204 (M<sup>+</sup>).

8-Formyl-2,2-dimethyl-2-silatetralin (11) : <sup>1</sup>H NMR  $\delta$  10.32 (1H, s), 7.64, (1H, d, J = 7.6 Hz), 7.31 (1H, d, J = 7.3 Hz), 7.18 (1H, dd, J = 7.6, 7.3 Hz), 0.04 (6H, s); <sup>13</sup>C NMR  $\delta$  193.1, 143.5, 142.1, 133.5, 133.4, 130.2, 124.6, 29.4, 15.1, 10.9, -2.3: IR (film) 1697 cm<sup>-1</sup>; MS *m*/*z* 204 (M<sup>+</sup>).

6-Carboxy-2,2-dimethyl-2-silatetralin (12) – A mixture of 6-formyl-2-silatetralin (10) (1.14 g, 5.60 mmol) in 35 % H<sub>2</sub>O<sub>2</sub> (0.60 g, 6.1 mmol), NaH<sub>2</sub>PO<sub>2</sub>·2H<sub>2</sub>O (0.20 g, 1.68 mmol), MeCN (5.6 mL), and water (1.7 mL) was stirred with NaClO<sub>2</sub> (0.71 g, 7.84 mmol) at rt for 24 h. After filtration, the organic layer was evaporated and water was added to the residue. The product was taken up in CH<sub>2</sub>Cl<sub>2</sub>. Usual work-up of the CH<sub>2</sub>Cl<sub>2</sub> extract gave the title compound (12) (1.25 g, 93 %, mp 156-157°C). <sup>1</sup>H NMR δ 7.86, 7.16 (each 1H, d, *J* = 7.6 Hz), 7.86 (1H, s), 0.05 (6H, s); <sup>13</sup>C NMR δ 172.3, 145.5, 141.4, 129.1, 129.0, 128.1, 125.4, 29.1, 21.7, 10.8, -2.5; IR 2886-2561, 1688 cm<sup>-1</sup>; MS *m/z* 220 (M<sup>+</sup>).

*N*-(2-Bromoveratryl and 2-bromopiperonyl)-*N*-Methyl-2,2-dimethyl-2-silatetralin-6-carboxamides (14): a) Acid chloride [prepared from 12 (165 mg, 0.75 mmol) and SOCl<sub>2</sub> (0.21 mL, 3.00 mmol)], *N*-methyl-2-bromoveratrylamine (13a) (222 mg, 0.90 mmol), and K<sub>2</sub>CO<sub>3</sub> (156 mg, 1.13 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) were used. After reaction similar to that noted for 8a, chromatography (hexane : EtOAc = 20 : 1 ~ 4 : 1) afforded bromo-amide (14a) (341 mg, 98 %, mp 101-102°C). <sup>1</sup>H NMR  $\delta$  7.11 (1H, s), 3.82, 3.67, 3.45 (each 3H, s), -0.04, -0.05 (each 3H, s); <sup>13</sup>C NMR  $\delta$  171.7, 148.7, 140.9, 140.7, 136.7, 132.3, 129.3, 128.4, 127.7, 125.9, 115.2, 113.2, 112.7, 56.2, 56.1, 37.1, 29.4, 21.1, 11.3, -2.2; IR 1633 cm<sup>-1</sup>; MS *m/z* 447 (M<sup>+</sup>), 449 (M<sup>+</sup>+2).

b) Acid chloride [prepared from **12** (286 mg, 1.30 mmol) and SOCl<sub>2</sub> (0.38 mL, 5.20 mmol)], *N*-methyl-2-bromopiperonylamine (**13b**) (359 mg, 1.60 mmol), K<sub>2</sub>CO<sub>3</sub> (216 mg, 1.60 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (10 mL) were used. After reaction similar to that noted for **8a**, chromatography (hexane : EtOAc = 20 :  $1 \sim 3 : 1$ ) afforded bromo-amide (**14b**) (512 mg, 91 %. 119-121°C). <sup>1</sup>H NMR  $\delta$  7.17, 6.55 (each 1H, s), 5.93, 5.91 (each 1H, s), 3.30 (3H, s), -0.04, -0.05 (each 3H, s); <sup>13</sup>C NMR  $\delta$  171.2, 147.6, 141.0, 137.6, 132.1, 131.3, 128.4, 127.8, 125.9, 113.9, 112.5, 110.3, 102.2, 37.1, 29.4, 21.2, 11.3, -2.2; IR 1637 cm<sup>-1</sup>; MS *m*/*z* 431 (M<sup>+</sup>), 433 (M<sup>+</sup>+2).

General procedure for Radical Reaction of Bromo-Amides (8, 14) --- A solution of bromo-amides (8, 14), Bu<sub>3</sub>SnH (1.5 eq.), and AIBN (0.5 eq.) in benzene was refluxed for 5 h. After removal of the solvent, water was added to the residue and the product was taken up in ether. The ether extract was washed with brine and dried. A residue obtained on removal of the solvent was dissolved in MeCN. The MeCN solution was washed with hexane. Evaporation of MeCN gave oily products, which were purified by preparative TLC.

**From bromo-amides (8)** a) Bromo-amide (**8a**) (58.8 mg, 0.13 mmol), Bu<sub>3</sub>SnH (59.3 mg, 0.195 mmol), AIBN (10.7 mg, 0.065 mmol), and benzene (6.5 mL) were used. Preparative TLC (developing solvent:

benzene : EtOAc = 7 : 1, three time developments) afforded afforded cyclized product (**15a**) (20.1 mg, 39 %, mp 151-153°C) and cyclized product (**16a**) (5.2 mg, 10 %) as oil.

*N-Methylphenanthridinone* (**15***a*) : <sup>1</sup>H NMR  $\delta$  7.93, 7.80, 7.58, 7.16 (each 1H, s), 4.11, 4.03, 3.80 (each 3H, s), 0.09 (6H, s); <sup>13</sup>C NMR  $\delta$  161.2, 153.1, 149.3, 143.0, 135.1, 132.5, 128.5, 122.8, 119.3, 117.4, 114.5, 109.1, 102.4, 56.1, 30.2, 29.9, 20.2, 11.6, -2.0; IR 1633 cm<sup>-1</sup>; MS *m/z* 367 (M<sup>+</sup>).

*N-Methylphenanthridinone* (*16a*) : <sup>1</sup>H NMR  $\delta$  8.01, 7.35 (each 1H, d, *J* = 8.9 Hz), 7.83, 7.09 (each 1H, s), 4.00, 3.96, 3.73 (each 3H, s), 0.07 (6H, s); IR (film) 1651 cm<sup>-1</sup>; MS *m/z* 367 (M<sup>+</sup>).

b) Bromo-amide (**8b**) (60.4 mg, 0.14 mmol), Bu<sub>3</sub>SnH (61.8 mg, 0.21 mmol), AIBN (12.0 mg, 0.07 mmol), and benzene (7 mL) were used. Preparative TLC (developing solvent: benzene : EtOAc = 12 : 1, three time developments) afforded cyclized product (**15b**) (17.9 mg, 36 %, mp 181-184°C) and a cyclized product (**16b**) (5.0 mg, 10 %, mp 131-132°C).

*N-Methylphenanthridinone* (**15b**) : <sup>1</sup>H NMR  $\delta$  7.88, 7.75, 7.59, 7.13 (each 1H, s), 6.09 (2H, s), 3.77 (3H, s), 0.08 (6H, s); <sup>13</sup>C NMR  $\delta$  161.0, 152.0, 147.9, 143.3, 135.0, 132.5, 130.6, 123.2, 120.8, 117.4, 106.9, 101.8, 100.2, 30.2, 29.9, 20.3, 11.6, -2.0; IR 1643 cm<sup>-1</sup>; MS *m/z* 351 (M<sup>+</sup>); HRMS *m/z* calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>Si 351.1291 (M<sup>+</sup>), found 351.1284.

*N-Methylphenanthridinone* (**16b**) : <sup>1</sup>H NMR  $\delta$  7.81, 7.10 (each 1H, s), 7.76, 7.20 (each 1H, d, *J* = 8.3 Hz), 6.22 (2H, s), 3.7 (3H, s), 0.07 (6H, s); <sup>13</sup>C NMR  $\delta$  159.3, 147.7, 147.3, 143.1, 134.9, 132.7, 129.1, 128.5, 123.4, 117.6, 114.8, 112.8, 102.6, 30.1, 29.3, 20.6, 11.6, -2.0; IR 1653 cm<sup>-1</sup>; MS *m*/*z* 351 (M<sup>+</sup>); HRMS *m*/*z* calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>Si 351.1291 (M<sup>+</sup>), found 351.1289.

**From bromo-amides (14)** : a) Bromo-amide (**14a**) (58.8 mg, 0.13 mmol), Bu<sub>3</sub>SnH (59.3 mg, 0. 195 mmol), AIBN (10.7 mg, 0.065 mmol), and benzene (6.5 mL) were used. Preparative TLC (developing solvent: benzene : EtOAc = 7 : 1, three time developments) afforded *N*-methylphenanthridinone (**17a**) (12.2 mg, 25 %) as an oil. <sup>1</sup>H NMR δ 7.89, 7.41 (each 1H, d, *J* = 8.3 Hz), 7.62, 6.80 (each 1H, s), 4.00 (6H, s), 3.76 (3H, s), 0.02 (6H, s); <sup>13</sup>C NMR δ 159.1, 146.5, 141.5, 141.2, 136.1, 129.7, 128.8, 128.2, 118.6, 115.1, 108.9, 102.0, 94.6, 52.7, 52.4, 26.6, 20.6, 18.6, 7.0, -2.0; IR (film) 1640 cm<sup>-1</sup>; MS *m/z* 367 (M<sup>+</sup>).

b) Bromo-amide (**14b**) (60.4 mg, 0.14 mmol), Bu<sub>3</sub>SnH (61.5 mg, 0.21 mmol), AIBN (12.6 mg, 0.07 mmol), and benzene (7 mL) were used. Preparative TLC (developing solvent: benzene : EtOAc = 15 : 1, three time developments) afforded *N*-methylphenanthridinone (**17b**) (11.0 mg, 22 %, mp 155-156°C). <sup>1</sup>H NMR  $\delta$  7.83, 7.40 (each 1H, d, *J* = 8.3 Hz), 7.62, 6.86 (each 1H, s), 6.03 (2H, s), 3.71 (3H, s), 0.02 (6H, s); <sup>13</sup>C NMR  $\delta$  162.7, 148.7, 145.1, 143.6, 140.0, 133.6, 133.5, 132.1, 118.9, 113.8, 108.9, 102.0, 101.6, 95.7, 30.7, 24.2, 22.3, 10.6, -2.3; IR 1647 cm<sup>-1</sup>; MS *m*/*z* 351 (M<sup>+</sup>); HRMS *m*/*z* calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>Si 351.1291 (M<sup>+</sup>), found 351.1289.

## **REFERENCES AND NOTES**

- 1. Present address: 683-56, Sashi-ougi, Nishi-ku, Saitama-shi, Saitama 331-0047, Japan.
- R. Tacke and H. Linoh, The Chemistry of Organic Silicon Compounds, Part 2; Bioorganosilicon Chemistry, eds. by S. Patai and P. Rappoport, John Wiley & Sons Ltd., 1989, Chapter 18.
- 3. O. Hoshino, T. Taguchi, and K. Miyauchi, *Heterocycles*, 1994, **38**, 883.
- 4. A. Hirokawa, A. Tatsuno, and O. Hoshino, *Heterocycles*, 1994, 38, 1103.
- O. Hoshino, A. Hirokawa, A. Tatsuno, A. Kigoshi, H. Watahiki, and T. Kurihara, *Heterocycles*, 1996, 43, 381.
- 6. R. A. Crochet and C. D. Blanton, Synthesis, 1974, 55.
- 7. *Cf.* T. M. Cresp, M. V. Sargent, J. A. Elix, and D. H. P. H. Murphy, *J. Chem. Soc.*, *Perkin Trans. 1*, 1973, 340.
- 8. E. Dalcanat and F. Montanari, J. Org. Chem., 1986, 51, 567.
- 2-Bromo-*N*-methylveratrylamine (13a) was prepared from veratric acid in 4 steps (azidation; Crutius rearrangement; reduction; bromination). Also 2-bromo-*N*-methylpiperonylamine (13b) was obtained from piperonic acid in a manner similar to that noted for 13a.