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Abstract – Scandium tris(triflate) efficiently catalyzes C-glycosylation of 

β-diketones with glycosyl acetate.   Elaboration of the β-diketo moiety in the 

resulting C-glycosides to heterocycles provides a flexible route to the 

C-nucleoside analogs. 

INTRODUCTION 

C-Nucleosides constitute a class of compounds containing a heterocycle connected to a sugar through a 

C–C bond, which is hydrolytically and enzymatically stable in contrast to the glycoside bond of the usual 

N-nucleosides.   Due to significant antiviral and antitumor activities exhibited by some of the members, 

considerable synthetic efforts have been devoted to these natural products and their analogs.1   A 

general synthetic strategy involves the initial installation to a sugar with a simple unit that serves as the 

progenitor of the desired heterocycle.   β-Diketo moiety as the C(1) substituent is among the useful 

progenitors, from which various heterocycles could be derived.   However, despite many different 

methods for C-glycosylation of malonate esters and β-keto esters,2 only a few methods are available for 

the reaction of β-diketone derivatives.3    

We previously discovered some prominent features of Sc(OTf)3 as the promoter for C-glycosylation of 

phenol derivatives.4,5   Of note, it catalyzes even the reaction of phenols (I) possessing a carbonyl 

functionality at the ortho position, which had been ranked as poor glycosyl acceptor.   By analogy to the 

structure of such phenols (Scheme 1), we were interested in the possibility of C-glycosylation of 

β-diketone derivatives under Sc(OTf)3 catalysis. 
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Scheme 1. 

In this communication, we describe a facile procedure for the C-glycosylation of β-diketones by utilizing 

Sc(OTf)3 as catalyst.   Utility of the resulting C-glycosides as the precursor to C-nucleoside derivatives 

is also illustrated with several examples. 

 

RESULTS AND DISCUSSION 

As the first set of experiments, we examined the reactions of 1,3-diphenylpropane-1,3-dione (2) (3 mol) 

and acetate (1) (1 mol) with 25 mol% of Sc(OTf)3 (Table 1).   Compounds (1) and (2) were mixed with 

the catalyst and Drierite® in dichloroethane at –30 °C, and the mixture was allowed to warm up.6   

Table 1.  Reactions of fucosyl acetate (1) and 1,3-diphenylpropane-1,3-dione (2). 
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BnO
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CH2(COPh)2
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CH(COPh)2

O
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25 mol% Sc(OTf)3
Drierite®

ClCH2CH2Cl
–30 ! T °C

Run Time (h)a Yield (%) "/#

1

2

3

–25b

+5c

+15d

5

11

31

84

89

72

10/1

2/1

1/5

T (°C)

1

2

3" 3#

a) Reaction time at T °C. b) The reaction was warmed to
–25 °C for 5 min. c) The reaction was warmed to +5 °C
for 1.5 h.  d) The reaction was warmed to +15 °C for 0.5 h.  

 
TLC-analysis showed consumption of 1 at –25 °C (5 h), and quenching gave the desired C-glycoside (3) 
in 84% yield in the α/β-ratio 10/1.   The isomers could be separated by silica-gel chromatography, and 
the anomeric stereochemistries were assigned by 1H NMR spectra; the JH1,H2 is 0 Hz for 3α , and 9.4 Hz 
for 3β, and n.O.e. was observed between H1 (5.18 ppm) and H6 (1.24 ppm) in 3α.   NMR spectrum 
also showed that the β-diketo moiety entirely exists as the keto form for each isomer, which indicates that 
steric congestion around the C-glycoside bond hinders the molecule to adopt the planar enol form.7 
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α-Glycoside (3α), preferentially formed at lower temperature, underwent gradual isomerization to the 
β-isomer, as the reaction temperature was raised (runs 2 and 3).   The α/β-ratio was reversed, reaching 
to 1/5 at 15 °C, which implied the existence of equilibration between the isomers.   Indeed, the isolated 
β-isomer (3β) underwent partial isomerization, upon treatment with diketone (2) (2 equiv.) and Sc(OTf)3 
(25 mol%) [dichloroethane, Drierite®, 15 °C, 18 h], giving 1:5-mixture of 3α and 3β. 

Table 2.  C-Glycosylations of β-diketones.6 
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O
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4

!-diketone
[Conditions]

Run Glycosyl acetate Product Yield (%), "/!

98%, "/! = 1/18

MeCOCH2COMe (8) (2 equiv.)

[–30 °C#20 °C for 4 h,

and 11 h at 20 °C ]e

4

i-PrCOCH2COPr-i (6) (3 equiv.)

[–30 °C#25 °C for 6.5 h, and 

23 h at 25 °C]d

OBn

5

80%, "/! = 1.1/1

91%, "/! = 1.2/1

4a
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73%, "/! = 1/155b

O

BnO OBn

CH(COPh)2
BnO

9

4

92%, " only
PhCOCH2COPh (2) (3 equiv.)

[–30 °C#10 °C for 5 h]c

OAc

MeCOCH2COMe (8) (2 equiv.)
[–30 °C#–5 °C for 1 h]

MeCOCH2COMe (8) (2 equiv.)
[–30 °C#–5 °C for 1 h]

a) 15 mol% of Sc(OTf)3. b) Molecular sieves 3A was used in place of Drierite®. Use fo Drierite® gave lower yield.

c) The "/!-ratio altered to 2/1 by warming the raction to 60 °C followed by stirring for 2 h.   d) Quenching the reaction 

at early stage [–30 °C#10 °C, 1 h, 22% conversion of 4] gave 7" as a single isomer. e) Quenching the reaction at

early stage [–30 °C#–5 °C, 1 h, 27% conversion of 4] gave a 28/1-mixture of the isomers.
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Table 2 shows that the present C-glycosidation method is applicable to various combinations of glycosyl 

acetate and β-diketone.6,8   Though the final α/β-ratio depends on their structures, a general trend for 

isomerization decreases with the bulkiness of the substituents on the carbonyl carbons in the β-diketo 

moiety (R).    

The ribose-derived glycosyl acetate (4) cleanly reacted with diketone (2) to give, by quenching the 

reaction at 10 °C, α-C-glycoside (5α) as a single isomer in 92% yield (run 1).   β-Glycoside was not 

observed even after prolonged reaction time at 10 °C, while heating of the reaction at 60 °C caused 

isomerization of 5α  to give, after 2 h, 2:1-mixture of the α- and β-glycosides.   In contrast, the reactions 

of ribosyl acetate (4) with 2,6-dimethylheptane-3,5-dione (6) and acetylacetone (8) led to isomerization of 

the initially formed α-glycoside bond at/below room temperature (runs 2 and 3).   The α/β-ratio reached 

almost unity during the glycosyl donor (4) was thoroughly consumed, though the α-glycosides 

predominated at early stages — for the reaction of diketone (6), only the α-glycoside was obtained at the 

22% conversion of 4 (10 °C), while for diketone (8), the α/β-ratio was 28 /1 at the 27% conversion of 4 

(–5 °C). 

Also in the reaction of acetylacetone (8) with fucosyl acetate (1) or rhamnosyl acetate (11), the glycoside 

formation and its isomerization concurrently proceeded (runs 4 and 5).   β-Glycosides predominated 

when the quenching was just done when the glycosyl donors were thoroughly consumed. 

The α/β isomerization probably takes place by ring opening–reclosure at the C(1)–oxygen bond via the 

acyclic intermediate (A) and/or heterolytic disconnection–recombination of the glycoside bond via the ion 

pair (B) (Figure 1). 9   Considering the planarity of the β-diketo moiety in A and B, sever steric 

interference would be exerted between the sugar moiety and the substituent R in the transition states 

leading to such intermediates.   This could account for the observed tendency of the isomerization. 
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Figure 1.  Isomerization of the anomeric stereochemistry. 

 
It is worthwhile to note the X-Ray structure and behavior of β-C-glycoside (10β) obtained by the reaction 

of 8 with 1 (run 4 in Table 2).   In this case, the resulting β-glycoside (10β) existed in both keto and 

enol forms (keto/enol = 1.2/1), which was different from the C-glycosides of other runs in Table 1 and 

Table 2.7   Although C-glycosides (10α) and (10β) could not be separated by silica gel chromatography, 

recrystallization of the mixture gave a pure sample of 10β in keto form (10β-keto).10   This compound, 
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at least in the crystal lattice, adopts the conformation in which the π-faces of the carbonyl groups are not 

coplanar [the angle between dipoles defined by both carbonyl groups is 141.0°], unfavorable to the 

isomerization.11   Furthermore, NMR spectral analyses exhibited that the energy barrier of 

tautomerization is high.   When a solution of 10β-keto in CDCl3 (NMR tube) was allowed to stand at 

room temperature, the keto/enol-ratio reached only 13/1 in two days and 2.0/1 in two weeks. 
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Figure 2.  ORETP drawing of 10β-keto (β-diketone framework is drawn by bold lines).  

 
The C-glycosides were exploited to standard reactions for heterocyclic construction from β-diketone in 

order to examine their utility in the synthesis of C-nucleoside analogs. 

Scheme 2 shows conversions of C-fucosylated diketone (3β) to the pyrazole and isoxazole derivatives.   

Diketone (3β) was treated with hydrazine monohydrate or N-hydroxylamine hydrochloride in refluxing 

ethanol to give the desired heterocyclic C-glycosides (13β) and (14β) in high yields.   Both reactions 

proceeded stereospecifically, and none of the α-isomers were detected. 
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Scheme 2.  Reaction of C-fucosylated diketone (3β) with hydrazine or hydroxylamine. 

Examples of the heterocycles derived from C-glycosyl β-diketones are shown in Figure 3.   Pyrazole 
and isoxazole formations were carried out by the similar methods as above, and 
pyrazolo[1,5-a]pyrimidine system was constructed by condensation with 3-amino-5-phenylpyrazole in 

acetic acid and ethanol.12 
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Figure 3.  Selected examples of heterocyclic construction form C-glycosyl β-diketones. 

 
Pyrazoles (15α , 16α, and 16β) were obtained as single isomers as expected, while small quantities of the 

undesired isomers concomitantly formed in the synthesis of isoxazoles (17β, 18β) and 

pyrazolopyrimidine (19β).  Since these heteroaromatic C-glycosides, once formed, were 

configurationally stable under the reaction conditions, formation of the undesired isomers could be 

attributed to the isomerization of the starting material during the reactions.  Although the anomeric 

stereochemistry is not always retained perfectly in the formation of the heterocyclic aglycon, these results 

demonstrate that the C-glycosyl β-diketones, obtained by the present C-glycosylation method, could serve 

as the useful precursors to a variety of C-nucleoside analogs. 
 
In summary, Sc(OTf)3 catalyzed C-glycosylation of β-diketones in high yields, and the β-diketone moiety 

in the C-glycosides could be easily converted to heterocyclces by conventional methods.   Because of 

its facility and efficiency, the present method will find utilities in the synthesis of C-nucleoside analogs of 

biological interest. 
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C-glycoside and involved in the α/β isomerization.  However, the pathway through the acyclic 

intermediate (A) cannot be excluded. 
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10. A pure sample of 10α was obtained from isoxazol (17α) as shown below, and its structure was 

unambiguously determined.  Isoxazol (17α) was obtained as the minor isomer in the synthesis of 

isoxazol (17β) and easily separable from 17β (see Figure 3).   
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