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Abstract – Pyridinium dicyanomethylides underwent site- and regioslective 

1,3-dipolar cycloaddition with ethyl 2,3-pentadienoate to give ethyl 

3-cyano-2-ethylindolizine-1-carboxylates in moderate yields. In two cases, a 

novel type of the tricyclc compounds, in addition to indolizines, were obtained 

whose structure was established by a single crystal X-Ray analysis. A plausible 

mechanism for its formation is also presented. 

 

INTRODUCTION 

The 1,3-dipolar reaction, whether concerted or not, undoubtedly rivals Diels-Alder reactions in ubiquity 

as well as in synthetic utility.1 Both intermolecular and intramolecular version of this cycloaddition 

represents an efficient method for the syntheses of a wide variety of carbocycles as well as heterocycles, 

including natural products; their synthetic potential is far from exhausted. Among the unsaturated 

compounds capable of behaving as dipolarophiles, allenes exhibit some peculiarities.2 Previously, we 

have briefly reported 1,3-dipolar cycloaddition of pyridinium dicyanomethylides (1) with 

1-phenylpropa-1,2-diene (2) and found that this allene has served as an synthetic equivalent of 
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1-phenylpropyne, but the reaction was not regiospecific to give a mixture of 2-methyl-1-phenylindolizine- 

3-carbonitriles (3) and 1-methyl-2-phenylindolizine-3-carbonitriles (4), through dehydrocyanation and 

1,3-sigmatropic hydrogen shift of the initial adducts. The regiochemical assignments were established by 

X-Ray analyses.3 In order to explore further generality of this reaction using allenes, we chose ethyl 

2,3-pentadienoate (5)4 having an electron deficient group this time and below describe briefly the results 

of the reactions with pyridinium dicyanomethylides (1).5 

 

RESULTS AND DISCUSSION 

The reaction of pyridinium dicyanomethylide (1a) with 5 in refluxing toluene for 30 h afforded site- and 

regioselectively ethyl 2-ethyl-3-cyanoindolizine-1-carboxylate (7a) in 50% yield. Analogous reactions of 

several 4-substituted pyridinium dicyanomethylides (5b-g) gave the corresponding indolizines (7b-g) in 

low to moderate yields. Among them, ethyl 3-cyano-7-(1,3-dioxolan-2-yl)-2-ethyl-1-indolizine 

carbonitrile (7f) is especially required for further investigation on synthesis of porphyrin-linked 

indolizines since the 1,3-dioxolan-2-yl group has proven to serve as a formyl equivalent.6 In general, 

pyridinium ylides having an electron donating group at 4 position gave better yields than those possessing 

an electron withdrawing group. The structure, e.g. regiochemistry, was established by X-ray analyses.7 

For instance, the ORTEP drawing of 7f is shown in Figure 1.  
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It is passing note that the regiochemical results are in good agreement with HOMO-LUMO density 

interaction (frontier orbital theory).8 

In some cases, e.g. in the reactions with 1c and 1f, there were found additional compounds to the 

indolizines (7) whose 1H and 13C NMR spectra did not permit us to illuminate any structure but a single  

 

crystal X-Ray analysis established the structure as 8f (Figure 2).9 A plausible mechanism for the 

formation of 8f is depicted in Scheme 3; an initial 1,3-dipolar cycloaddition of 1f to 5 affords the 1:1 

adduct (9) followed by elimination of HCN to give a new ylide (10) which underwent 1,3-dipolar 

cycloaddition with another molecule of 5 giving 11 followed by 1,3-hydrogen shift finally to form 8f. All 

the attempts to aromatize 8f to the corresponding cycl[2.2.3]azine were unsuccessful in our hands. 

Further studies employing other allenes as dipolarophiles are now in progress. 
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Figure 1. ORTEP Drawing of 7f                      Figure 2 ORTEP Drawing of 8f
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7. A typical experimental procedure and results: A mixture of 1f (216 mg, 1.00 mmol) and 5 (252 mg, 

2.00 mmol) in toluene (2 mL) was heated under reflux for 30 h. After evaporation of the solvent, the 

residue was subjected to chromatography on SiO2 using hexane-ethyl acetate (3:1) as eluent. 7f: mp 

96-97 ºC (hexane-ethyl acetate); 1H NMR (CDCl3) δ 1.32 (3H, t, J = 7.6 Hz), 1.44 (3H, t, J = 7.0 
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Hz), 3.10 (2H, q, J = 7.6 Hz), 4.04-4.17 (4H, m), 4.40 (2H, q, J = 7.3 Hz), 5.85 (1H, s), 7.07 (1H, dd, 

J = 1.9, 7.0 Hz), 8.23 (1H, dd, J = 1.2, 6.9 Hz), 8.36-8.37 (1H, m); 13C NMR (CDCl3) δ 14.40, 15.22, 

20.24, 60.03, 65.52, 97.09, 102.40, 112.65, 118.30, 125.42, 136.64, 137.75, 145.32, 162.40, 163.54; 

Anal. Calcd for C17H18N2O4: C, 64.96; H, 5.77; N, 8.91. Found: C, 64.93; H, 5.74; N, 8.84. Crystal 

data: C17H18N2O4, MW = 314.33, monoclinic, P21/c, a = 10.922(2), b = 4.402(4), c = 32.524(7) Å, β 

= 90.13(2)º, Z = 4, T = 203 K, Dc = 1.335 g cm-3, R1 = 0.045 (I > 2 σ(I)), wR2 = 0.144 (all data). 

8. For example, the HOMO and LUMO densities of 1f and 5 were obtained using CAChe systems 

(Version 4.1.1, CAChe Scientific, Oxford Molecular Group, PM3: J. J. Stewart, J. Comp. Chem., 

1989, 10, 209.).  
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9. 8f: 14 % yield; mp 174-175 ºC (hexane-ethyl acetate); 1H NMR (CDCl3) δ 1.06 (3H, t, J = 7.3 Hz), 

1.31 (3H, t, J = 7.2 Hz), 1.69 (2H, dd, J = 1.3, 7.0 Hz), 1.90 (2H, d, J = 7.3 Hz), 3.26 (1H, m), 3.55 

(1H, dt, J = 12.4 Hz), 4.03-3.79 (4H, m), 4.15-4.31 (4H, m) 4.53 (1H, m), 5.75 (1H, q, J = 7.3 Hz), 

6.01-6.03 (1H, m), 6.20 (1H, dq, J = 2.2, 7.1Hz); 13C NMR (CDCl3) δ 13.53, 14.40, 15.18, 15.46, 

24.65, 52.09, 59.46, 59.86, 61.14, 65.48, 72.56, 103.73, 105.86, 119.05, 119.49, 126.06, 134.63, 

136.85, 138.30, 160.33, 164.59, 169.80. Anal. Calcd for C24H28N2O6: C, 65.44; H, 6.41; N, 6.36. 

Found: C, 65.33; H, 6.38; N, 6.34. Crystal data: C24H28N2O6, MW = 440.48, triclinic, P-1, a = 

11.719(4), b = 12.741(4), c = 7.973(2) Å, α = 99.59(2)º, β = 95.39(2)º, γ = 98.40(2)º, Z = 2, T = 203 

K, Dc = 1.269 g cm-3, R1 = 0.053 (I > 2 σ(I)), wR2 = 0.150 (all data). 
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